NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

NAVIGATION SYSTEM DESIGN AND STATE
ESTIMATION FOR A SMALL RIGID HULL
INFLATABLE BOAT (RHIB)

by
Steven Terjesen
September 2014

Thesis Co-Advisors: Douglas Horner
Sean Kragelund

Approved for public release; distribution unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 07040-188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
222024-302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2014 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NAVIGATION SYSTEM DESIGN AND STATE ESTIMATION FOR A SMALL
RIGID HULL INFLATABLE BOAT (RHIB)

6. AUTHOR(S) Steven Terjesen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB protocol number N/A

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited A

13. ABSTRACT (maximum 200 words)

Autonomous operation of a small rigid hull inflatable boat (RHIB) is a complex problem that requires a robust
network of sensors, controllers, processors, and actuators. Furthermore, autonomous navigation requires accurate state
estimation, fusing and filtering data from an array of sensors to give the best possible estimates of attitude, position,
and velocity.

This thesis will address the hardware modifications and navigation state estimators used to configure the SeaFox
Mk 1l RHIB for future autonomous operations. The study began with a RHIB capable of manual and remote-
controlled operation. The proprietary controllers and processors were replaced with an open architecture system that
enabled an autonomous mode of operation and data collection from a suite of global positioning satellite receivers and
inertial measurement units. Multiple navigation state estimators were designed using the extended Kalman filter and
several variants of the unscented Kalman filter. Each filter was evaluated against simulated and actual sea trial data to
determine its accuracy, robustness, and computational efficiency.

14. SUBJECT TERMS SEAFOX, RHIB, unmanned, autonomous, extended Kalman filter, EKF, 15. NUMBER OF
unscented Kalman filter, UKF, square root unscented Kalman Filter, SR-UKF, spherical simplex PAGES
unscented Kalman filter, SSUKF, square root spherical simplex unscented Kalman filter, SR-SSUKF. 223
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UuU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution unlimited

NAVIGATION SYSTEM DESIGN AND STATE ESTIMATION FOR A SMALL
RIGID HULL INFLATABLE BOAT (RHIB)

Steven Terjesen
Lieutenant, United States Navy
B.S., United States Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MECHANICAL ENGINEERING
MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2014
Author: Steven Terjesen
Approved by: Douglas Horner

Thesis Co-Advisor

Sean Kragelund
Thesis Co-Advisor

Garth V. Hobson
Chair, Department of Mechanical & Aerospace Engineering

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Autonomous operation of a small rigid hull inflatable boat (RHIB) is a complex problem
that requires a robust network of sensors, controllers, processors, and actuators.
Furthermore, autonomous navigation requires accurate state estimation, fusing and
filtering data from an array of sensors to give the best possible estimates of attitude,

position, and velocity.

This thesis will address the hardware modifications and navigation state
estimators used to configure the SeaFox Mk Il RHIB for future autonomous operations.
The study began with a RHIB capable of manual and remote-controlled operation. The
proprietary controllers and processors were replaced with an open architecture system
that enabled an autonomous mode of operation and data collection from a suite of global
positioning satellite receivers and inertial measurement units. Multiple navigation state
estimators were designed using the extended Kalman filter and several variants of the
unscented Kalman filter. Each filter was evaluated against simulated and actual sea trial
data to determine its accuracy, robustness, and computational efficiency.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

VI.

TABLE OF CONTENTS

INTRODUCGCTION. ...ttt ittt ste e et esae e e sreesaeeneesneeneeeneenns 1
A BACKGROUND ..ottt sttt ena s 1
B.] AN ©) G 1 ST 2
C. DESIGN REQUIREMENTS ...ttt 4
D. THESIS OBJIECTIVES. ..ottt 5
SEAFOX MODIFICATIONS ..ottt 7
A. OVERVIEW ...ttt ettt ana et 7
B. SEABORNE CONTROLLER AREA NETWORKccocoiiiiiiieiiceee, 7
C. ADDITIONAL SENSORS ..ot 11
D. ROBOT OPERATING SYSTEMooviiiieciceceeeeee e 11
KALMAN FILTER ESTIMATION REVIEW........cccoooi i 13
A. OVERVIEW.ottt sttt 13
B. EXTENDED KALMAN FILTER ..ot 13
C. UNSCENTED KALMAN FILTER......ccco it 17
1. Standard UKF ..o 18
2. Square ROOT UKF ... 22
3. Spherical SIMPIEX......cccieiiiiiecee e 25
SIMULATION TOOLS AND ASSUMPTIONSccoiiiiiiiiieiseeeeeeee e 29
A. INTRODUCTION. ..ottt sttt saa e eneenns 29
B. SIMULATION ENVIRONMENT AND ASSUMPTIONS.........ccccceovrnnne. 29
1. Simulation ENVIroNMENtcccoovviieie e 29
2. Simulation Assumptions and Sensor Modelscccccoeeiieiieiinnns 30
REFERENCE FRAMESo oottt 33
A. OVERVIEW.ottt sttt 33
B. REFERENCE FRAME DEFINITIONS.......cccoiiieeee e, 33
1. Earth Centered Inertial............cccooiiiiiiii i 33
2. Earth Centered Earth FiXedcccccvooeiieiiiieseee e 34
3. Geographic (Navigation) Frame.........ccccooevieenenesie e 34
4. BOAY FFameooveiie et 35
5. Local Tangent Plane ... 36
C EARTH REFERENCE ELLIPSOID.......cccociiiiee e 36
D ECEF TO NAVIGATION FRAME TRANSFORMATION.c.cceevnee. 38
E. NAVIGATION TO BODY FRAMEccccoiiieeciece et 39
F. ECEF TO LOCAL TANGENT PLANE ..ot 41
NAVIGATION STATE ESTIMATOR DESIGNccoeiiiieiiee e 43
A OVERVIEW. ...ttt ettt 43
B. PROCESS MODELccviiiiitce st 43
1. AHRS L e 45
2. INS Position and VeloCity.........ccccceeveveeiiiie e 47
3. SEAFOX I IMU MOGEcoviiiiiiiiicese e 49

Vil

C. MEASUREMENT MODELSccocoiiiiiiiiiee e 53
1. AHRS Measurement Model ONe.........ccooceeiiiiienciie e 53
2. ARHS Measurement Model TWO ... 59
3. INS Measurement Model ... 62
D. EKF EQUATIONS ...ttt 63
1. AHRS s 63
2 IN S s 66
E. O] SRR 67
VII. DISCUSSION AND RESULTSoiiiiiiiiiieieee s 69
A OVERVIEW ..ottt sttt 69
B. FILTER TUNING ..ottt e 69
C. FILTER COMPUTATION SPEED COMPARISONccocvvviiiirrirnnnn 72
D. ATTITUDE PERFORMANCEcccoiiiiitiet st 75
E. POSITION AND VELOCITY PERFORMANCEccocoovniviiiieieenen, 87
F. ESTIMATOR RANKING AND SELECTION......cccoiiiininenie e 89
G. SEAFOX I ESTIMATION COMPARISONccooiiiiiiiene e 95
VIIl. CONCLUSION AND RECOMMENDATIONS........ccccoiiiinieieee e 101
A CONCLUSION ..ottt 101
B. RECOMMENDATIONS FOR FUTURE WORK........cccoviiiiininciee 102
APPENDIX: MATLAB CODEooiiiiieitct e 105
A. OVERVIEW ...ttt ettt 105
B. EXTENDED KALMAN FILTER MATLAB CODEc.cccocvviviviienne 105
1. Measurement Model One Implementation...........ccccccoeeveervenenne. 105
2. Measurement Model Two Implementationcccccoevviiinennne. 114
C. STANDARD UNSCENTED KALMAN FILTER MATLAB CODE125
1. Measurement Model One Implementation...........ccccccoceveiieenne 125
2. Measurement Model Two Implementationccococvvninnnnn. 134
D. SQUARE ROOT UNSCENTED KALMAN FILTER MATLAB
(@] PR 142
1. Measurement Model One Implementation...........c.ccccoccevveinennne. 142
2. Measurement Model Two Implementationccococviiiinnn. 152
E. SPHERICAL SIMPLEX UNSCENTED KALMAN FILTER
MATLAB CODE ...ttt 161
1. Measurement Model One Implementation...........c.ccccoccevveivennne. 161
2. Measurement Model Two Implementationccocociviiinnen. 171
F. SQUARE ROOT SPHERICAL SIMPLEX UNSCENTED KALMAN
FILTER MATLAB CODE......c.coiiieese ettt 181
1. Measurement Model One Implementation...........c.cccccccevvevvennne. 181
2. Measurement Model Two Implementationccococvvninnnnn. 192
LIST OF REFERENCES........c.cot ittt bbb 203
INITIAL DISTRIBUTION LIST .ot 205

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Figure 26.
Figure 27.

Figure 28.
Figure 29.

Figure 30.
Figure 31.

Figure 32.

LIST OF FIGURES

SEAFOX I in low speed (left) and high speed (right) operation, from [2]........ 2

SEAFOX 1 prior to modifiCation.ccccevvvieiieeii e 2
Legacy SEAFOX 11 control input arChiteCture.cooevvriinienieie e 3
Mounting and operation of the ATLAS SONarccccovvveveviieieeresieese e 4
High speed maneuverable surface target (top), ship deployable surface

target—1Jet Ski (bottom), from [3]. ...ccooveiiee s 8
King node system status diSPlay.cccoeiiriiiiiiiesiese e 9
Several of the nodes and sensors installed on the SEAFOX Il.........cccovvnene. 10
EKF reCUrsion SUMMAIY.coieiieiieiieie ettt sre e 16
The unscented transformation of an arbitrary nonlinear function, after

1 TP 17
Standard UKF FECUISION.cviiiiiiiiiiiiiiieieie et 22
SR-UKF FECUISION. ...ttt st nae s 25
3" order filter for GPS acceleration estimation.coo.covvereeeereeseesneenn. 31
Navigation, ECEF, and ECI coordinate reference frames, after [19]. 35
Body reference frame representation, from [8].........ccccccvivviiiiviicie i, 36
Earth reference ellipsoid, after [8]. ..o, 37
Plane rotations of yaw, pitch, and roll from navigation to body...................... 40
Cascaded Kalman filter for state eStimation.cccccevereiinienieneenecie e 44
Measurements from the IMU accelerometer channels.cccccoceniivinnenn. 50
Measurements from the IMU gyro roll rate, pitch rate, and yaw rate

CRANNEIS. ... 52
Roll measurements as approximate from MM1...........cccooceiviiiiniinin e 58
Pitch measurements as approximate from measurement model 1................... 58
Acceleration X-channel comparison using the equations from MM2. 61
Acceleration Y-channel comparison using the equations from MM2............. 61
Acceleration Z-channel comparison using the equations from MM2. 62
Comparison of relative computation time of a 10 seconds data set run in

Simulink against the EKF(1) run time.ccocooiiiiiiriiieseeeee e 73
Comparison of relative computation time for a single iteration of each

estimator function against EKF(L)........ccoooviiiiiiiiin e 74
Roll angle estimates during a high rate turn with MML1 (top), MM2

(101110 1 1) USSP USRS 77
Roll angle estimates with MM1 (top), MM2 (bottom).ccccevvevveieinenenn, 78
Pitch angle estimates during a high rate turn with MM1 (top), MM2

(10110 1 1) SRS SSURSRSS 79
Pitch angle estimates with MML1 (top), MM2 (bottom)..........ccccevvevinieninnnnns 80
Roll angle estimates for MM1 estimators when gyro and accelerometer

biases are unknown during a high rate turn (top), MM2 (bottom). 81
Roll angle estimates for MM1 estimators when gyro and accelerometer

biases are unknown (top), MM2 (DOttOM).ovviiiiiiiieniee e 82

Figure 33.
Figure 34.

Figure 35.
Figure 36.

Figure 37.
Figure 38.

Figure 39.
Figure 40.

Figure 41.
Figure 42.

Figure 43.
Figure 44.
Figure 45.

Figure 46.

Pitch angle estimates for MML1 estimators when gyro and accelerometer

biases are unknown during a high rate turn (top), MM2 (bottom). 83
Pitch angle estimates for measurement model 2 estimators when gyro and
accelerometer biases are unknown (top), MM2 (bottom).........ccccceevvviiervennnne 84
SR-UKEF gyro bias estimates for eXperiment 2.ccooevveiveveninnennesiennnens 85
Summary of averaged RMS error for attitude estimation for both
EXPEITMEINTS. ...ttt sttt e b s e b e e tesreesbeenee s 86
RMS VeloCity eStIMALe BITOIS........civiieiierie e 87
Accelerometer RMS bias errors for SR-UKF(2) with arbitrary initial bias
VAIUBS. .ot 88
RMS POSItION EStIMALE BITOIS.....c.viiieieieiieeie e 89
Radar plot of filter evaluation criteria, score on a scale of one to nine,
Where NiNe IS the DESE SCOTE.oiiiiiie e 90
Weighted estimator COMPAriSON.cccccvereeieieerieiesee e e 93
Weighted estimator score based on RMS errors and design weights.
Lowest score is best performing filter.cccoovevieii i, 94
EKF(1) and SR-SSUKF(1) position estimate comparison during turning
CITCIE MANEUVETS. ..ottt 95
EKF(1) and SR-SSUKF(1) velocity estimate comparison during turning
CITCIE MANBUVETS. ...ttt bbbttt bbb 96
EKF(1) and SR-SSUKF(1) roll estimates compared against unfiltered gyro
1] T = 4] ST SS 97
EKF(1) and SR-SSUFK(1) pitch estimates compared against an unfiltered
QYO SOIULION. 1.ttt e e nne s 98

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Table 7.
Table 8.

Table 9.

Table 10.

LIST OF TABLES

List of nodes installed on SEAFOX 1.ooviiiiiiiiiieeeee e 9
Honeywell HG1700AG58 sensor specifications, from [5]......ccccccevvvivevvennene. 11
Values for simulated sensor PSD and bias.ccccooeveeiiiiniinnienieseecsee e 32
WGS84 parameter constants, from [8].cccveovvvveiviii i 37
Noise characteristics for the SEAFOX Il GPS sensor, after [4].........cccvenee. 63
Noise variance values for process and measurement noise in the Condor

SIMUIAtION ENVIFONMENT.oiviiiiiie e e 70
Final process and measurement noise scaling factors............ccccoeveviveieieenenn, 71
Number of iterations per time step of each UKF variant for the given

ESIMALON HESIGN. 1.veevveeieeie et re et e e e e nne s 72
Initial state and covariance estimates used initialize each navigation

BSTIMALON. ...ttt 76
Subjective weights assigned to each evaluated estimation category. 92

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF ACRONYMS AND ABBREVIATIONS

AHRS attitude, heading, and reference system
ASW anti-submarine warfare

AUV autonomous underwater vehicle

CAN controller area network

CAVR Center for Autonomous Vehicle Research
DCM direction cosine matrix

EKF extended Kalman filter

EW electronic warfare

GPS global positioning satellite

HSMST high speed maneuverable surface target
IMU inertial measurement unit

INS inertial navigation system

ISR intelligence, surveillance, and reconnaissance
MCM mine countermeasures

MIO maritime interdiction operations

MM1 measurement model one

MM2 measurement model two

MS maritime security

PID proportional-integral-derivative

PSD power spectral density

RHIB rigid hull inflatable boat

RMS root mean squared

SEACAN seaborne controller area network

SOF special operations forces

SPU signal processing unit

SR-SSUKF square root spherical simplex unscented Kalman Filter
SR-UKF square root unscented Kalman filter
SSUKF spherical simplex unscented Kalman filter
SUW surface warfare

UKF unscented Kalman filter

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

Foremost, | would like to thank my advisors, Sean Kragelund and Professor Doug
Horner, as well as Aurelio Monarrez for all the work they put in to the SEAFOX Il and

extra hours spent on the water collecting data for my work.

I would like to thank David Purdy, Bill McAuley, and their support team from the
Port Hueneme Surface Targets Group for all the help and guidance in transforming the
SEAFOX II. Your contribution to this work and future research at NPS is immeasureable.

Professors Issac Kaminer and Vladimir Dobrokhodov, thank you for helping lay
the foundation by which this thesis was written, | would have never gotten this far

without your help.

Lastly, to my family, thank you for supporting me in all that I do.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

l. INTRODUCTION

A. BACKGROUND

The United States Navy’s Unmanned Surface Vehicle Master Plan defines the
Navy’s long term commitment to the research and development of unmanned surface
vehicles. There are seven critical mission areas the Navy intends to support with
unmanned surface craft: mine countermeasures (MCM), anti-submarine warfare (ASW),
maritime security (MS), surface warfare (SUW), Special Operations Forces (SOF)
support, electronic warfare (EW), and maritime interdiction operations (MIO) support
[1]. Each warfare mission area requires unique system configurations and demands, but

share common ties to the problem of open water navigation and obstruction avoidance.

The Naval Postgraduate School Center for Autonomous Vehicle Research
(CAVR) has been developing surface and subsurface vehicles to navigate unknown
waterways with semi and full autonomy with aims to support SOF and intelligence,
surveillance, and reconnaissance (ISR) missions. These vessels use various sensors to
collect data from the surrounding environment to make navigation decisions and avoid

surface and subsurface obstacles.

The SEAFOX | (Figure 1), built by Northwind Marine, Inc. and modified by
previous thesis students and faculty, was CAVR’s first attempt at full surface vessel
autonomy. SEAFOX 1 has been used to conduct experiments for autonomous riverine
navigation, networked collaborative multi-vehicle operations, and maritime interdiction
operations. While the vessel has seen much success, it suffers from significant control
command to execution lag due to legacy and proprietary controller interfaces. This thesis
and future work will focus on building upon the successes of the SEAFOX | while
leveraging new technologies to avoid previous control limitations on a new platform for

autonomous surface vessel (ASV) research.

Figure 1. SEAFOX I in low speed (left) and high speed (right) operation, from [2].

B. SEAFOX I

The SEAFOX Il (see Figure 2), designed and built by Northwind Marine, Inc., is
a 5.1 meter rigid hull inflatable boat (RHIB). Its water jet propulsion system is powered
by a JP-5 fueled Mercury 3.0 liter V-6 OptiMax JP racing engine capable of sustained
speeds over 30 knots. The water jet acts as both propulsion and rudder giving the vessel

good performance at high speed but poor maneuverability at low speed.

Figure 2. SEAFOX Il prior to modification.

Northwind Marine designed the SEAFOX Il for two modes of operation: manual
and remote. In manual operation mode the boat is controlled by an onboard operator
through the helm and throttle lever or a digital autopilot control display. For remote
operation the SEAFOX Il is outfitted with a wireless communications suite that relays
commands and data between the vessel and a remote control station. In both manual
autopilot and remote control operation, all control signals are routed through a
proprietary signal processor unit (SPU) for relay to the rudder and throttle actuators.
Figure 3 depicts the legacy SEAFOX |1 architecture from control input to output. Prior to
modification, the SEAFOX Il provided no organic means of capturing rudder feedback,
throttle position, engine RPM, GPS location or speed for online or offline data analysis.
The SPU and associated controllers were locked in a proprietary system leaving few

options for experimental methods of control.

Figure 3. Legacy SEAFOX Il control input architecture.

As the SEAFOX |1 held little capability for autonomous control experimentation,
it was used primarily as a designated chase boat for the SEAFOX | ASV as well as a

launch/recovery platform for Hydroid REMUS 100 autonomous underwater vehicles
(AUVs).

C. DESIGN REQUIREMENTS

In support of ongoing research programs, the SEAFOX Il is being modified to
deploy the autonomous topographic large area survey (ATLAS) sonar system designed
by the Applied Research Laboratories of the University of Texas at Austin (ARL:UT).
The ATLAS sonar will be mounted to the bow via an electrically-actuated truss designed
by Hullux Subsea Technologies to deploy the sonar below the waterline, as shown in
Figure 4.

Figure 4. Mounting and operation of the ATLAS Sonar

The ATLAS is designed to detect subsurface obstacles, particularly in the riverine
and littoral environment. Aside from obstacle detection, the sonar will provide local
bathymetry data such as water depth, temperature, and sound speed velocity. In order for

4

the sonar to provide accurate information it requires the following data inputs at an

update rate of 10 Hz:

Platform navigation time: The reference time of the vehicle for all
parameters in the current navigation data sample.

Geographic latitude and longitude.

Pitch angle: Positive angles are measured upward from the horizontal
plane.

Roll angle: Positive angles are measured clockwise when viewed from the
platform bow.

Heading angle: Positive angles are measured clockwise from true north.
North and east velocity components.

Platform water speed: Speed of the platform relative to the water in the
direction of the current heading.

Beyond providing quality navigation data to the ATLAS sonar, further

modifications needed to be made to the existing control network to advance the progress

towards full autonomy. To allow for a more complete research vessel and to circumvent

the existing proprietary controller network, the SEAFOX Il needed to be outfitted with a

new control architecture and sensor suite capable of the following:

An open architecture network capable of scheduling tasks, executing
orders, and logging data from multiple controllers, actuators, and sensors.

Three modes of operational control: manual, remote controlled, and fully
autonomous.

Inertial and GPS data.
Engine control and feedback.
Rudder control and feedback.

Wireless communications for remote control operation and monitoring.

D. THESIS OBJECTIVES

To meet the design requirements, this thesis focused on two major objectives:

first, to modify the SEAFOX Il hardware to provide the ability to capture and store live

GPS and inertial measurement data, and secondly to investigate methods of determining

the vessel’s attitude, velocity, and position at a high update rate in support of both sonar

and future autonomous operations. In pursuit of the second objective a navigation state

5

estimator needed to be designed. For this task, five Kalman filter variants for state
estimation were investigated for accuracy, robustness, and computational efficiency: the
extended Kalman filter (EKF), unscented Kalman filter (UKF), spherical simplex
unscented Kalman filter (SSUKF), square root unscented Kalman filter (SR-UKF), and
the square root spherical simplex unscented Kalman filter (SR-SSUKF). Each estimator
was evaluated using simulated data and the best performing estimator was evaluated
against data obtained from the SEAFOX Il while operating on the Monterey Bay.

Il. SEAFOX MODIFICATIONS

A. OVERVIEW

Building a sensor and controller network for an autonomous vehicle from
scratch has potential to be a lengthy and costly process depending on the state of the
baseline vehicle. The SEAFOX Il provided a unique platform that was originally
designed from the ground up with unmanned operation in mind. All of the actuators
necessary to operate the rudder and throttle were already integrated into the baseline
system. While this thesis focused on modifications specific to the SEAFOX II, the
implemented system architecture has been demonstrated to work on a variety of vessels.
The simplicity of this architecture enabled its complete installation onboard SEAFOX Il

in under one week.

B. SEABORNE CONTROLLER AREA NETWORK

The seaborne controller area network (SEACAN) was developed by a joint
government and contractor team managed by the Surface Targets Branch, Naval Air
Warfare Center Weapons Division (NAWCWD) at Naval Base Ventura County, Port
Hueneme, California. It is a scalable, open architecture, root level access system that
permitted CAVR to quickly upgrade the the SEAFOX Il autonomous capabilities.

The Surface Targets Group develops, builds, and maintains a growing fleet of
unmanned surface vessel targets, two examples of which are shown in Figure 5. The
vessel by which the SEAFOX Il modifications based is the high speed maneuverable
surface target (HSMST), a 7 meter, twin outboard USV with a top speed of 45 knots [3].
The HSMST is remote operated from a base station and is capable of autopilot waypoint
tracking. The HSMST class of vessel was designed and built with ease of replication, low
cost, and robustness in mind as these targets are often destroyed by the naval weapon
systems that engage them.

Figure 5. High speed maneuverable surface target (top), ship deployable surface
target—1Jet Ski (bottom), from [3].

The controller area network (CAN) is the automotive serial bus standard for intra-
vehicular device communication, connecting a network of nodes that operate sensors,
actuators, and other control devices without the need of a central host computer. The
SEACAN system is based on the architecture of the CAN, adapted for use in the
maritime environment. The nodes the make up the SEACAN system are listed in Table 1.

Each node, with the exception of the king and port and starboard engine actuator nodes,

8

contains a central processing unit, 4th generation (CPU-4) microcontroller board for

sensor and actuator control.

Node List

e King

e Rudder Feedback

e Rudder Controller

e Compass & Heading

e RF Modem

e GPS

e Engine Controller (Port & Starboard)
e Throttle Controller (Port & Starboard)

Table 1. List of nodes installed on SEAFOX II.

The king node provides the monitoring and supervision of the vessel’s controller
area network (CAN) bus activity and indicates system status via an LCD display as
shown in Figure 6. The display not only shows node status such as heading or rudder
positions but also has various options for tuning the system such as resetting the rudder’s

centerline zero position.

Figure 6. King node system status display.

The remainder of the nodes listed in Table 1 function as their name implies.
Several nodes are depicted in Figure 7. The rudder controller regulates the single speed
hydraulic steering pump with pulse width modulation to allow for variable motor speeds.
The rudder controller utilizes a tuned proportional-integral-derivative controller with set
saturation limits to insure smooth rudder movements. The rudder feedback provides
current rudder angle information. The heading node relays Euler angles and rates
provided by the MicroStrain 3DM-GX1 inertial measurement unit (IMU). When
operating in remote mode, the RF modem node sends periodic information to the base
station operator and receives commands as necessary. For safety purposes, if the carrier
signal is lost for a specified amount of time, the vessel will enter a holding pattern while
awaiting reconnection. If reconnection with the base station is not regained within a
specified time window the kill switch is enabled and the engines shutdown. The engine
controller nodes monitor the engine RPM and control the engine startup and shutdown
while the throttle controller monitors the throttle position and executes throttle position

commands.

Figure 7. Several of the nodes and sensors installed on the SEAFOX 1.
10

C. ADDITIONAL SENSORS

In addition to the sensors organic to the SEACAN system, an additional high
performance IMU and GPS receiver were installed. The IMU installed is a Honeywell
HG1700AG58 containing a three-axis ring laser gyro (RLG) and accelerometer. The
IMU sensor specifications are listed in Table 2. The IMU takes readings at 600 Hz and
outputs to a standard RS-422 serial interface at a rate of 100 Hz. The additional GPS
receiver, a ComNav Vector G2 GPS Satellite Compass, shown as DGPS in Figure 7,
houses two GPS receivers 0.5 meters apart as well as a two-axis gyro. The DGPS outputs
position, heading, turn rate, pitch or roll, course over ground, and speed over ground at a
rate of 20 Hz. The ComNav GPS has 5 meter position accuracy and 0.5 degree heading

accuracy [4].

Honeywell HG1700AG50 Sensor Specifications

Sensor | Operating Scale Scale Bias AXis Output Frequency
Range Factor Factor Alignment Noise Response
Accuracy
Accel. | 37 (+/-g’s) | 2'-*x | 1000 (ppm, | 50 (milli- | 0.5 (milli- 100 70 max. (90
600 1 sigma) g’s, 1 rad, 1 (milli-g’s | deg phase lag
(ft/sec? sigma) sigma) max) at freq in Hz)
Gyro. | 1074 (+/- 2% | 1000 (ppm, 50 0.5 (milli- | 45 (milli- | 70 max. (90
deg/sec) 600 1sigma) | (deg/hr, 1 rad, 1 rads/sec | deg phase lag
(rad/sec) sigma) sigma) max) at freq in Hz)

Table 2. Honeywell HG1700AG58 sensor specifications, from [5].

D. ROBOT OPERATING SYSTEM

An added benefit to the SEACAN structure is the ability to issue rudder and
engine commands from outside the system. This plug and play capability allows for the
development of an autonomous mode of operation, controlled by an onboard computer.

The Robot Operating System (ROS) was used to develop the software to enable data
11

acquisition and of the SEAFOX Il. ROS is a widely supported, open source, open
architecture operating system that provides a large library of tools associated with robot
control and communication [6]. ROS runs on SEAFOX Il from an embedded PC-104 and
executes programs that store sensor data from the SEACAN system and other sensors in a
common database, run the designated navigation filters, and issue commands to the
SEACAN rudder and throttle controllers. Once the ATLAS sonar suite is installed,
programs that analyze sonar data, generate navigation paths, and follow those paths will

be created to enable a fully autonomous mode of operation.

12

I11. KALMAN FILTER ESTIMATION REVIEW

A. OVERVIEW

The Kalman filter, developed by [7], is a powerful estimator used in a wide range
of applications from computer vision to navigation. For linear systems, the Kalman filter
has been proven to provide an optimal solution to minimize the error covariance between
the true state and its estimate [8]. For non-linear systems, the extended Kalman filter
(EKF) is a commonly used method for state estimation, but provides sub-optimal error
covariance minimization due to its first order linearization of non-linear processes. Many
alternatives to the classic EKF have been developed that vary in computational
complexity and cost. In this paper, the unscented Kalman filter (UKF) and several
variants are explored as an alternative to the EKF in order to make use of the highly

nonlinear measurement equations used in the subsequent state estimator design.

B. EXTENDED KALMAN FILTER

The extended Kalman filter has been studied in depth with numerous publications
available deriving and analyzing the process. This section uses the equations derived in

[9] and chapters 4 and 5 of [8] to summarize the EKF process.

The discrete time extended Kalman filter addresses the issue of estimating the true

state x e R" driven by the nonlinear process

X1 = f(Xk’uk’Vk) (3.1)

where ug is a process input measurement and vy is process noise at time instance k.
The process nonlinear measurements z e R™ are defined by
z, =h(x,w,) (3.2)
where wy is the measurement noise at time instance k.

The process and measurement noise is assumed to be zero mean Gaussian,

independent, and uncorrelated white noise:

13

v, ~ N (O,
«~N(0Q) (3.3)
w, ~N(O,R)

The estimate of the state at time k is shown as X,. The nonlinear state time
propagation equation X, and measurement process Z, are defined as
%1 = fF(%,U,,0)

Z. =h(%,,0) (34)

which are approximations of the state and measurement with noise terms set to their
expected value of zero.

By linearizing the non-linear functions in Equation (3.4) around the current value

of the state estimate, the Kalman filter solution becomes

X ., ~%X +F (xk - xk)+Vkvk

(3.5)
z, ~ 7, + H (X — %)+ Ww,
where
_ afi afi
i~ A, Wi TR
axj (% U ,0) i (% e ,0)
oh oh
ij = U] =— (36)
OX.
3.0 5.0

are the first order Jacobians of the nonlinear state process, state excitation process,

measurement process, and measurement noise process, respectively.

By defining an error process as the difference between the true and estimated

values

exm = X~ XK

€, =2,-1,

i

(3.7)
with an associated covariance of

R ~N(0.E[&,¢€) (3.8)

X

14

where E[-] is the expected value operator.

The process and measurement noise processes are now defined as

Q ~N(0V,QV/)

- (3.9)
R~ N(0,WRW,)
Equation (3.5) can then be substituted into Equation (3.7) to form
€1 = F (X — %) +Vv, (310

g, =H(e,)+Ww,
making the error process linear with respect to the state error.

Since the actual measurement at time k is known, it is possible to use the

measurement error €, to estimate the predicted state error € _and correct an a posteriori

state estimate
X =X + K€, (3.11)

The Kalman gain K, minimizes the error covariance B,. The Kalman gain is

calculated at each time instance by the equation
K, =R H, (HPRH +R,)" (3.12)
where the “-” superscript denotes an a priori estimate.
The a posteriori state estimate is rewritten to take the form
% =% +K, (z,-h(%.,0)) (3.13)
where the “+” superscript denotes the corrected a posteriori state estimate.
The error state covariance is then updated as
P =(1-KH,)PR (3.14)

The state and error covariance estimates are projected ahead to the next time

instance by
% = F(%,0,,0) (3.15)

15

P, =FPF +Q, (3.16)

The EKF recursion is executed at every time instance as shown in Figure 8. The
Kalman gain is computed with the time updates from the previous time step. The a priori
state estimate and error state is then corrected providing the a posteriori estimates which

are propagated through their nonlinear transformations to provide a time update.

Figure 8. EKEF recursion summary.

The performance of the EKF is tightly coupled to the nonlinearity of the system
process and measurements. The EKF state distribution is approximated by a Gaussian
random variable which is propagated through a first-order linearization of the nonlinear
process. If the error propagation cannot be accurately approximated with a linearized
function due to the function’s higher order terms, then the estimates will be poor and may
diverge. An additional source of error is the difficulty of developing and coding the
Jacobian matrices from Equation (3.6) which can be highly complex and extensive
depending on the nonlinear process and measurement functions. Higher order filtering
schemes such as Bayesian or Particle filters address the issues associated with

linearization by approximating the true probability density function with large numbers
16

of random sample points, but at a significant computational cost. For further analysis of
the Bayesian filter see [10]. As the state estimators developed for this thesis are intended

for testing in a real-time system, a less computationally burdensome filter is required.

C. UNSCENTED KALMAN FILTER

The unscented Kalman Filter (UKF), first published in [11], is founded on the
idea that it is simpler to approximate a probability distribution function than an
arbitrary nonlinear function. By propagating a finite set of specifically chosen points
(sigma points), with a given mean and covariance, through a nonlinear function to form
a cloud of transformed points, the statistics of the transformed points can be estimated
to approximate the true mean and covariance as depicted in Figure 9. For Gaussian
inputs, the UKF approach is accurate to the third order Taylor series expansion of a
nonlinear function, and for non-Gaussian inputs the approximations are accurate to the
second order, whereas the linearization approach of the EKF is only accurate to the first
order [12].

Figure 9. The unscented transformation of an arbitrary nonlinear function, after [13].

17

Several variants of unscented transformations have been developed for the
purpose of computational savings such as the square root UKF (SR-UKF) [14], spherical
simplex UKF (SSUKF) [15], and the square root spherical simplex UKF (SR-SSUKF)
[16]. The algorithms for each variant, including the standard UKF implementation will be

developed in subsequent sections.

1. Standard UKF

Following the unscented transformation (UT) algorithms from [13], consider a
random variable xeR"“*, where L is the number of states being estimated, that is
propagated through an arbitrary nonlinear function y =h(x). If x has an assumed mean
of Xand covariance P, , the statistics of y can be calculated by first forming a matrix

y of 2L +1sigma vectors according to

Xo =X
z=x+(JL+2)R) =1L
' (3.17)
=X—(4/(L P i=L+1,..,2L
Zl X ((+2«) X)l_L | + yrrey
where A is a scaling parameter calculated by
A=a’(L+x)-L (3.18)

The parameter « determines the spread of the sigma points around the mean X and is a
tunable parameter that is generally set to values 1x10™ <@ <1. The parameter « is a

secondary scaling parameter that is generally set to values of x =3—L or zero. The term

((L+/1) PX)_ in Equation (3.17) represents the ithrow or column of the matrix square

root depending on the function used to calculate it. Using MATLAB’s chol function to

calculate the matrix square root leads to using the ith row.

Next, the sigma vectors from Equation (3.17) are individually passed through the

nonlinear function to form

Y, =h(y) i=0,..,2L (3.19)
Lastly, the mean and covariance for y are approximated using a weighted sample mean

and covariance of the transformed sigma points by

y=Ywmy (3.20)

Py = Z\Ni(c) ([Yi - V][Yi - V]T) (3'21)

The sigma weights are calculated according to:

wm = 2
L+4
WS = A +(1-a%+p) (3.22)
L+4
Wi“”):Wi(‘:):# i=0,..,2L
2(L+4)

where g is determined by the assumed probability distribution of x. For Gaussian
distributions g =2 is the optimal value. The UT can be extended to the problem of state

estimation, forming the unscented Kalman filter.

For a state vector x e R™ where n is the number of states being estimated, let the

nonlinear system given by

X = | (Xk’uk’vk)

z =h(x,w
=N 0% W) (3.23)
v, ~N(0,Q)
w, ~ N (0,R)
Let an augmented state estimation vector of dimension L be defined as
~a - U
X1 = [lel VI—l WI—liI (3.24)

where the augmented state vector is extended to include all measurement and

process noise terms.

19

The state error covariance matrix is also extended to include the measurement and

process noise matrices:

R, 0 O
P,=| 0 Q O (3.25)
0 0 R
The 2L +1sigma vectors are calculated following Equation (3.17) :
Xea= |:)2k—l X1+ \ (L+A)PR%, X, — \ (L+A)R, J
(3.26)

AT T T

7=|(7) () ()]

The sigma vectors are then propagated through the nonlinear system process
defined in Equation (3.23) using the weights from Equation (3.22) to calculate the a

priori transformed mean and covariance of the state and measurement estimates

according to:

X = f(ZI:(—l!Zl?—l’uk) (3.27)

The 2L+1 estimates are used to create a weighted mean value for the state at time

2L
)A(k_ = zwi(m)}(ix,k (3.28)
i=0
The covariance of the transformed process is calculated by executing a weighted

expected value operation between the transformed sigma points and the weighted mean:

P = ZZLWi(C) I:Zi),(k -)A(;][Z.Xk - X]T (3.29)
i—0

Similarly, the transformed sigma points are used in the measurement process to

calculate the weighted mean value of the measurement estimate according to:

T = h(ZerZkR)
2L (3.30)

20

The covariance of the measurement process is estimated by executing a weighted
expected value between the transformed measurement estimates and weighted mean of

those estimates:

P = iwi((:) |:Yi,k - Zk:H:Yi,k -7 :'T (3.31)
i—0

The cross covariance between the state process and measurement process is

approximated as the weighted covariance:

2L
Pos =W~ [-2] (3.32)
i=0

With the time update complete and covariance determined, the state corrections
can now be implemented via the standard Kalman filter measurement update equations.
The Kalman gain, however, is calculated using the cross covariance and measurement
covariance instead of solving the algebraic Riccati equation as in the EKF

implementation:
K =P ;P (333)

The state and state covariance is lastly corrected in the same manner as the EKF:

X =% +K (z,-%)

(3.34)
Pk+ = Pk_ - Kkpk_KkT
This algorithm is initialized by
% =E[%]
x=[% o o]
Py =E[(%= %) (%~ %)’ | (3.35)
P 0 0
PP=10 Q O
0 0 R

where the process and measurement noise are set to their mean value of zero and the
process and measurement noise matrices augment the covariance matrix used to create

the sigma point vectors.

21

The standard UKF algorithm for state estimation is summarized in Figure 10. In

general this algorithm is O(L3) computations which can be computationally intensive for

systems with large state vectors.

Figure 10. Standard UKF recursion.

2. Square Root UKF

For the standard UKF algorithm, the most computationally intensive operation is
creating the sigma vectors at each time step, which requires calculating the matrix square

root of the augmented error covariance matrix executed by the MATLAB chol function.

The Cholesky factorization function chol uses O(L3 / 6) computations and computes the

matrix square root of the state covariance matrix given by SS' = P. The square root UKF
(SR-UKF) propagates S directly by using the linear algebra techniques: QR
decomposition, Cholesky factorization updating, and efficient least square. QR

decomposition is a technique used to calculate a matrix square root and requires only

O(NLZ) computations, where N is the number of sigma vectors. The Cholesky factor

22

update corrects the output of the QR decomposition and requires only O(Lz)

computations. In general, the SR-UKF computations are of the same order of magnitude
as the standard UKF, but provide better numerical properties such as a guaranteed
positive-semidefinite state covariance matrix [14]. This is an important quality as the
numerical stability of the UKF depends on the state error covariance matrix remaining

positive-semidefinite.

Using the same system described in Equation (3.23) and the augmented state

vector in Equation (3.24), the augmented Cholesky factor is defined as

S, 0 0
=/ 0 JQ o0 (3.36)
0 0 <R

The sigma point vectors are created with the same methods from the standard
UKF with the exception that the matrix square root of the covariance is replaced by the
Cholesky factor:

ls—lz[ik—l)A(k—l"' (L+’1)Ska)A(k—l_ (L+ﬂ’)ss:|

2=l) ()]

The time update process is carried out in the same manner as the standard UKF

(3.37)

with the exception that the state covariance estimate calculation step is replaced by the
time update of the Cholesky factor S, using the QR decomposition of the weighted
sigma vectors and subsequent Cholesky factorization update or downdate depending on

the value of the WO(C)Weight value. The QR decomposition is represented as the

MATLAB operator gr, likewise the Cholesky update is represented by the MATLAB

operator cholupdate:

23

X = f(}(;—l’ll?—l’uk)

2L
>A<£ = zWi(m))(i),(k
i=0

Sy = qr{[Wl(C) (Zf:(zL,k — %):|}

S, = cholupdate{Sk’,(Zé,k - *E)’Sign(WO(C))}

(3.38)

The measurement update equations are the same as the UKF, but replace the
calculation of the measurement error covariance with the QR decomposition and

Cholesky update:

Y =h(zxf)

2L
2k = ZWi(m)Yi,k
i=0

o o[(s 2]

S, = cholupdate{Sfk ,(Yo,k - 2k),sign (WO(C))}

(3.39)

The error cross covariance calculation is the same as the UKF implementation.
Efficient least squares is used to back-solve for the Kalman gain through the use of
MATLAB’s “/”” operator:

K, =(P, 5 /S5)S; (3.40)

The measurement correction step is executed in the same manner as the UKF, but

the correction to the error state is executed with a Choleskly downdate according to:

X =%+ K (z,-2)
U=K,S, (3.41)
S, = cholupdate{s, U, -1}

The SR-UKF recursion is summarized in Figure 11 and initialized by

24

)A(o:E[Xo]

na [a U

=% 0 0] (3.42)
S, 0 0

si=|0 JQ o
0o 0 R

Figure 11. SR-UKF recursion.

3. Spherical Simplex

As both the standard UKF and SR-UKF are of the same computational

complexity of O (L3), one way to reduce the number of computations is to use less sigma

point vectors to estimate the state mean and covariance. The spherical simplex method of
selecting sigma points, developed by [15], requires only L+2 sigma vectors vice the 2L+1
required in both the UKF and SR-UKF by rearranging the sigma points on a hyper-

sphere.
25

First, the zeroth weight is chosen such that 0<W, <1. This weight only affects

the fourth and higher order moments of the sigma point set. The remaining weights are

calculated by

W = i=1..,L+1 (3.43)

fori=0
W, = ¢ (3.44)
— fori=0

which helps to mitigate the effect of higher order terms.

Lastly, the zeroth weight of the scaled weight set can be modified to incorporate

prior knowledge of the probability distribution by

WO =w, +(1-a”+ B)
W™ = w, . (3.45)
W —w™ —w

With the scaled spherical weights developed, the simplex matrix for selecting the

sigma points is created using the algorithm

-1
{ZO } fori=0
0
zi* . (3.46)
Z) = -1 fori=1...,]
i (j +1) W,
OH
1 fori=j+1
i(i+1)w,

The spherical simplex sigma point vectors for the spherical simplex UKF
(SSUKEF) are created by

le—l =)A(l?—l +Z, Pka—l . (3.47)

The square root spherical simplex UKF (SR-SSUKF) sigma point vectors are
created according to

Ze =X, +Z.S,. (3.48)

The algorithms for the SSUKF and SR-SSUKF are identical to the standard UKF

and SR-UKEF, respectively, utilizing the spherical weights from Equation (3.45) and

sigma point selection from Equations (3.47) or (3.48).

27

THIS PAGE INTENTINONALLY LEFT BLANK

28

IV. SIMULATION TOOLS AND ASSUMPTIONS

A. INTRODUCTION

In order to properly investigate the qualities of each navigation estimator, a
controlled simulation environment was used to gather and analyze data. Utilizing a
simulation environment required certain model and equation simplifications, but
parameter values were chosen to mimic the true SEAFOX Il data as close as possible

with respect to sensor specifications.

B. SIMULATION ENVIRONMENT AND ASSUMPTIONS
1. Simulation Environment

Lacking a truth model for data recovered from the SEAFOX Il sea trials, a robust
simulation environment was used to evaluate and test each estimator. Condor: The
Competition Soaring Simulator is a commercially available flight simulator that
incorporates the use of a six degrees of freedom (6DOF) flight model and high fidelity
physics engine that operates up to 500 cycles per second [17]. An application program
interface (API) was recently developed that exports real-time flight telemetry data from
Condor to MATLAB/Simulink and imports control surface commands from Simulink to

Condor.

The following states of interest are available through the API at a frequency of
100 Hz:

X =[¢ A0, X0 Vo1 24,V Ve Vg, 0, 60,17, P, TV, | (4.1)
e (¢,4,h) are latitude, longitude, and altitude in degrees and meters,

respectively.

e (X, Y. Zy) are the LTP coordinates in meters.

e (V,,V,,V,) arethe LTP velocity components in m/s.

o ((p, e,y/) are the roll, pitch, and yaw Euler angles measured in radians.

29

o (p,q, r) are the roll, pitch, and yaw rates measured in radians per second.

eV, isthe true airspeed in m/s.

Due to software limitations in the API, the LTP frame acceleration states were not

available during the development of this thesis.

2. Simulation Assumptions and Sensor Models

It is assumed that the Condor simulation environment uses a non-rotating flat
earth model, therefore sidereal vector in the LTP frame], = 0. Condor does not provide
organic accelerometer measurements so these measurements were approximated

following the derivation of specific force, F", from [18]. LTP acceleration was
approximated using 3™ order filter shown in Figure 12, and the rotation matrix from LTP

to body frame was formed with the available Euler angles using Equation (5.13):

PRV e v R #2)

The Simulink representation of the filter used to estimate LTP acceleration is

shown in Figure 12 and has the state space representation

x] [o 1 o]x] o
X, = 0 0 1 |[x,|+0|u (4.3
% | |-k -k, —k|[x | [k,
where,
klza):
k, =2Cw?
2 = 260, (4.4)
k; =24,
k, =@,

and o, is the natural frequency and £ is a damping coefficient.

The filter bandwidth values were empirically determined to be @, =10 rad/s and

£ =15.

30

Figure 12. 3" order filter for GPS acceleration estimation.

In an effort to make the simulated gyro and accelerometer measurements more
realistic, normally distributed band-limited white noise and constant biases were added to
each channel. The resulting gyro simulation sensor model used throughout the simulation

trials was

~b b
a)bi = a)bi +bgs +Vgs

b, =0 (4.5)
v~N(0,0%)
with associated accelerometer model:
== :(Rf’\/'t +af xV' - Rf’gt)eras +V,,
b, =0 . (4.6)
v,,~ N (O, 0;)
The LTP position, speed, and heading from the output state vector were also
corrupted with additive band-limited white noise resulting in the simulation models

P'=P'+v,, v,~N (O,aﬁ) 4.7

Vi =V +vp, v ~N(0,07) (4.8)

31

7 =y+v,, v, ~N(00]) (4.9)

The power spectral density (PSD), defined as the variance of the noise, and bias
values used for each simulated sensor throughout all the simulations are in Table 3. All

values were chosen to closely mimic their counterpart onboard the SEAFOX II.

Sensor Noise and Bias Values for Condor Simulation

Sensor PSD Bias
Gyro o5 =(00Lradis)’ | b, =[2.4x10* -1x10* 2x10*]
Accelerometer ol = (0,1 m/52)2 b, = [1.5><10-2 -1.5x107 1><10-2]T
GPS o’ =(32m)’ 0
GPS Speed o2 =(44 m/Sz)2 0
2=,
GPS Heading &2 =(0.001 rad) 0

Table 3. Values for simulated sensor PSD and bias.

32

V. REFERENCE FRAMES

A. OVERVIEW

The design of a navigation system requires the transformation of sensor data
between various frames to a common frame of reference. The accelerometer, gyroscope,
and GPS measurement data must be transformed from their respective measurement
frames of reference to a common frame prior to integration. Four frames of reference and
the methods to transfer between systems are discussed in this chapter and used in the
subsequent navigation system design: Earth centered inertial (ECI), Earth centered Earth

fixed (ECEF), geographic (or navigation), and body frame.

B. REFERENCE FRAME DEFINITIONS

This section covers a brief overview of the four reference frames used throughout
this thesis. All reference frame equations, transformations, and descriptions covered in
this chapter are derived from chapter 2 of [8], which provides a thorough analysis of the

topic.

1. Earth Centered Inertial

In the inertial frame of reference, Newton’s second law of motion applies. The
point of origin for an inertial frame of reference is arbitrary, but the three coordinate axes
must be orthogonal to one another. Inertial sensors, such as an accelerometer and
gyroscope, produce measurements relative to an inertial reference frame, resolved along

the sensor’s measurement axis.

The ECI reference frame is a non-rotating frame with its origin located at the
Earth’s center of mass. The z-axis is defined as parallel to the Earth’s rotation axis. The
x-axis is perpendicular to the z-axis, intercepting the sphere of the earth at 0° latitude.
The y-axis is orthogonal to both the x-axis and z-axis forming a right-handed coordinate

system. See Figure 13 for further details.

33

2. Earth Centered Earth Fixed

The Earth centered Earth fixed (ECEF) reference frame is defined similarly to the
ECI frame in that the origin is collocated at the center of Earth’s mass and the z-axis is
parallel to the Earth’s rotation axis. The ECEF x-axis is fixed at the intersection of the
Earth’s sphere at 0° latitude and 0° longitude. The y-axis is perpendicular to both the z-
axis and x-axis to complete a right-handed coordinate system. See Figure 13 for further
detail. The ECEF frame rotates relative to the ECI frame with frequency:

1+365.25 cycle |(2z rad/cycle

@ (5 @
* | (365.25x24) hr)\ 3600 sec/hr

SeC

~

J =7.292115x10 (5.1)

3. Geographic (Navigation) Frame

The navigation frame is a local reference frame that moves with the vehicle,
relative to the Earth’s geoid. It is defined by the projection of the vehicle’s origin onto the
Earth’s reference ellipsoid as shown in Figure 13. The z-axis points from the platform
origin towards the origin of the reference ellipsoid. The x-axis points towards true north
along the plane orthogonal to the z-axis. The y-axis points east, perpendicular to both the

x-axis and z-axis, completing the right-handed coordinate system.

34

Figure 13. Navigation, ECEF, and ECI coordinate reference frames, after [19].

4, Body Frame

The body frame is rigidly attached to the vehicle. For this thesis, the body frame
origin, vehicle center of gravity, and sensor origins are assumed to coincide which
simplifies the transformations between sensor measurements and the frame the
measurements are used in. The body frame x-axis, shown as the u-axis in Figure 14,
points towards the front of the vehicle. The normal direction of vehicle motion is
assumed to be in the x-direction. The z-axis is perpendicular to the x-axis and points at
the bottom of the vehicle. The body y-axis is perpendicular to both the z-axis and y-axis

to complete the right-hand coordinate system.

The rotation rate vector of the body frame relative to the inertial frame, resolved

along the body axes is defined as . =[p,q,r]", where p is the angular roll rate about

35

the x-axis, q is the angular pitch rate about the y-axis, and r is the angular yaw rate about

the z-axis. Each angular rate is positive in the right-hand sense as shown in Figure 14.

Figure 14. Body reference frame representation, from [8].

5. Local Tangent Plane

The local tangent plane (LTP) is a convenient frame of reference for navigation is
local areas. The LTP frame uses a right hand north, east, down rectangular coordinate
system where the origin is located in the vicinity of the vehicles operating area. For a
stationary system located at the LTP fame origin, the LTP frame and navigation frame

coincide.

C. EARTH REFERENCE ELLIPSOID

An accurate model of the Earth is vital to the accuracy of a navigation system.

Figure 15 depicts a representation of the Earth’s reference ellipsoid.

36

Figure 15. Earth reference ellipsoid, after [8].

The ellipsoid is defined by is semi-major axis (a) and its semi-minor axis (b).

The axis values are defined by the WGS84 geodetic system and shown in Table 4.

WGS84 Parameters

Parameter Symbol Value Units
Semi-major Axis a 6378137 Meters
Semi-minor AXis b 6356752.314 Meters
Flatness f= aT_b 0.00335281
Eccentricity e=,f(2-1) 0.08181919

Table 4.

WGS84 parameter constants, from [8].

For a point P on the Earth’s surface there is a north-south meridian plane of

constant longitude that intercepts the Earth’s ellipsoid. If arbitrary point P has a latitude

of ¢ and longitude A then the meridian radius can be described as:

(5.2)

For the same point P, the prime verticle, an east-west vertical plane that intercepts
the reference ellipsoid as shown in Figure 15 that is normal to the meridian plane, has a
radius of:

a

Ry (¢) = \/m (5.3)

These radii are used for coordinate transformation between geodetic coordinates

[4,4,h] and the ECEF coordinates [x,,y,,z,] , where h is the altitude of P above the

reference geoid.

D. ECEF TO NAVIGATION FRAME TRANSFORMATION

The navigation frame is a unique frame in that the origin of the navigation frame

moves with the vehicle such that the vehicle’s position expressed in the navigation frame
is X" =[0,0,-h]". Latitude ¢ and longitude A define the origin of the navigation frame

on the reference ellipsoid. To obtain the earth relative velocity vector of the vehicle in the

navigation frame, the ECEF velocity vector V¢ =%Xemust be transformed to the

navigation frame:
V! =RV} (5.4)
The components of the velocity vector V," =[v,,v,,v,]" represent the instantaneous

north, east, and down velocity components along the navigation frame axes. Since
latitude, longitude, and altitude are the common values output by GPS receivers, the
relationship between ECEF and geodetic position must be established and used to relate

V." to the rate of change of latitude, longitude, and altitude (¢ A, h).

Using the radii from Equations (5.2) and (5.3), and the eccentricity constant from

Table 3, the relationship between ECEF position and geodetic position is defined as:

x, =(Ry +h)cos(¢)cos(1)
Y. =(Ry +h)cos(g)sin(1) (5.5)
. [RN (1—e2)+h]sin(¢)

38

Z

The velocity vector V. can be expressed as:

oX® . oOX*® . oOX°® .
= - +

A 5 é ~ A P h (5.6)
where the partial derivatives can be expressed as
. —sin(¢@) cos(1)
88)(=(Ry, +h)| =sin(g)sin(2) |,
’ cos(g) .
. —cos(¢)sin(A) . [cos(¢)cos(4) St
6); =(Ry +h)| cos(g)cos(2) |, =| cos(¢)sin(A)
0 sin(g)
Equation (5.7) can then be rearranged to:
(Ry +h) 0 0l ¢
Vi=R: 0 (Ry+h)cos(g) 0 |l 4 (5.8)
0 0 -1/ h

Finally, Equation (5.8) can be reduced to show the relation in Equation 4:

v, (Ry +h)¢
V. =|v, |=| cos(¢)(Ry +h)4 (5.9)
v, —h

In differential equation form, Equation (5.9) becomes:

(Ry +h)cos(g)

¢
A= e (5.10)
h

E. NAVIGATION TO BODY FRAME

The body frame is related to the navigation frame through the Euler angles
(6.9,w) pitch, roll, and yaw, respectively. A direction cosine matrix (DCM) which is
39

used to transform vectors from the body to navigation frame can be formed by three

plane rotations as shown in Figure 16.

Figure 16. Plane rotations of yaw, pitch, and roll from navigation to body.

The three plane rotations from body to navigation frame are calculated by:

[cos(y) sin(w) O cos(d) 0 —sin(H)
R,, =|-sin(y) cos(y) O|,R,=| O 1 0 ,
0 0 1 sin() 0 cos(6)
- (5.11)
1 0 0
R.,=|0 cos(p) sin(p)
|0 —sin(p) cos(p)

To create the DCM, R”, the plane rotations from Equation (5.11) are multiplied

in a 32—-1 sequence

R, =R,,R,,R,, (5.12)
resulting in the rotation matrix:
cycl sy co —-sé
R =| cysfsp—sycp sysfsp+Cycp COSe (5.13)

cysdcp+sysp Sysdcp—cysep cOco

where s =sin(-), and ¢ =cos(-) .

40

This rotation matrix has properties such that the rotation matrix that transforms

vectors from the body to navigation frame is the transpose of the defined DCM:

Rl =(RY) (5.14)

via:

Q= tan‘l(R:(Z’s)J, 0= —sin‘l(RE(l, 3)),

oo R
v [R:(l,l)]

where R’ (row, colum) marks the appropriate matrix indices.

(5.15)

For local navigation in the vicinity of the local tangent plane origin, the rotation
matrices and Euler angles can be assumed to be equal resulting in

R =R’
Re=(Ry)

F. ECEF TO LOCAL TANGENT PLANE

(5.16)

A vehicle’s arbitrary position in the ECEF frame is defined as

e
X vehicle

=[x Y ze]T, and the origin of the LTP frame resolved in the ECEF frame is

defined as X/, =[X, Y, 2]T . The vector that connects the LTP origin to an arbitrary

ECEF position is

_X¢

LTP *

AX®=X¢

vehicle

(5.17)
Two plane rotations are required to transform a vector defined in ECEF to LTP.

First the vector is rotated about the ECEF z-axis by the angle A (longitude) then

vertically by angle ¢ (latitude) to form the rotation matrix from ECEF to LTP as

cA sA O -s¢ 0 cg —S¢CcA —S¢sSA Cc¢
Ri=|-s2 ¢4 0|l 0 1 0 |=| -s4 cA 0 |. (5.18)
0 0 1l|icpg 0 s¢ —CfCcA —CPsSA —S¢

41

To resolve a vehicle’s position in LTP, Equation (5.17) is rotated by the rotation
matrix in Equation (5.18) resulting in

X' = RIAX®
t e e
X X X
o R R (5.19)
Ye | = Re Ye| = Yo
Zd Ze ZO

42

V1. NAVIGATION STATE ESTIMATOR DESIGN

A. OVERVIEW

A complimentary filter fuses the information from multiple sensors operating at
various frequencies to produce a combined estimate of a desired state or parameter. In
this implementation, a high rate sensor is used as the input to a system process and the
output is corrected by a second sensor that operates at a much lower data output rate. For
attitude estimation, the rate gyro measurements are integrated to estimate the vehicle’s
orientation. Depending on the quality of the gyro, these estimates can significantly drift.
Likewise, the accelerometer measurements are integrated once for velocity estimates and
a second time for position estimates which will lead to large dead reckoning errors
without correction from an external source. Further discussion on complimentary filters

can be found in chapter 7 of [8].

B. PROCESS MODEL

In a standard combined position, velocity, and attitude process model as described
in chapter 11 of [8], the number of estimated states for even a simple navigation system
can number around 15 when considering three dimensional position, velocity, and
attitude, and gyro and accelerometer bias errors. The unscented Kalman filter process
augments the already large state vector with process and measurement noise terms,
growing the state vector to 30 states or more. When considering that the UKF must iterate
2L+1 or L+2 times per time step depending on the sigma point selection method, where L
is the number of states, it is clear that reducing the number of states is paramount to
developing a practical real-time navigation estimator that features the UKF framework.
To this end the process model was split into an attitude, heading, and reference system
(AHRS) and an inertial navigation system (INS), reducing the number of states per

estimator.

The cascaded estimator is broken into three major categories: sensor
measurements, attitude determination, and position and velocity tracking. The cascaded
process model used in each estimator is depicted in Figure 17. This cascaded design

43

closely follows the work presented in [20], [21], and [22]. The AHRS module receives
inputs from the GPS, IMU, and previous time step estimates from the INS module and
updates the vehicle’s attitude. The updated attitude estimates are used to form a DCM
from the body frame to the LTP reference frame, which is used by the INS module to

update position and velocity estimates.

Figure 17. Cascaded Kalman filter for state estimation.

The state vector for the AHRS module estimators is:

A~ ~ ~ ~ T
X arrs =[qo G O, G5 Dy, Dby ngJ . (6.1)
. (G 6 G, G,) are the quaternion state estimates representing vessel
orientation.
o (Bgs,p Bgs,q 6gs,r) are the gyro bias state estimates.

The state vector for the INS module estimator is:

~ ~ ~ ~ ~ ~ ~ T
Xwo =% 9. 2 V, V. V, b, b, b,]|. (6.2)

as, X as,y as,

44

. (X, Y. Z) arethe north, east, and down LTP position estimates.

. (\7n \7e \7d) are the north, east, and down LTP velocity estimates.

J (Bas,x Bas,y Bas,z) are the body X, y, and z channel accelerometer bias
estimates.

1. AHRS

The output of the IMU gyro is an angular rate measured in the body frame with
respect to the inertial frame, represented in the body frame (a)f,’,) The angular velocity of
the body frame, with respect to the navigation frame, represented in the navigation frame
(a,) contains components of the sidereal rate (]) and transport rate (o,) represented
by the angular velocity of the navigation frame, with respect to the inertial frame,

represented in the navigation frame ()}):

oy, =op —Rlo] (6.3)

n “ni

w, cos(p) | | Acos(g) (/i +ay)COS(¢)

" =" + @ = 0 + -9 = —¢ (6.4)
—w, sin(g) | | —Asin(¢) _(;i+a)ei)sin(¢)

where o, is the sidereal rate, defined as the angular velocity of the ECEF frame, with
respect to the inertial frame, represented in the navigation frame at the latitude (¢) of the

vehicle navigation frame origin, and «,,is the transport rate of the navigation frame
origin in the ECEF frame resolved in navigation frame coordinates [8].
Equation (6.4) can be simplified by using a local tangent plane (LTP) assumption,

denoted with the superscript t, which fixes the navigation frame to a constant location

making e, =0 resulting in

2] @,; cos(¢,)
a)l?t = | = a)l?i - ba’;i = a)k?l - Rtb 0 . (6.5)
23 —w,; sin(¢,)

45

The standard representations of three-dimensional vehicle attitude are rotation
matrices (or DCMs), Euler angles, and unit quaternions. Rotation matrix update equations
are linear and lack singularities, but require nine differential equations. The Euler angle
representation requires only three differential equations, but uses non-linear equations
and contains a singularity when pitch passes 90 degrees. Unit quaternions use four
differential equations, but the equations are linear and lack any singularities. Unit
quaternions are used in the subsequent AHRS design due to the simplicity of their
differential equations and ability to easily construct Euler angles and rotation matrices
[23].

Following the quaternion derivations outlined in [23], the unit quaternion
kinematic equation for attitude representation using the angular rate as described by
Equation (6.5) is

0 (_Q)E”)T 1lo, O vy —w,

1
== _= 6.6
4= =7 g (6.6)

w!l))n =S (a)l:)n)
where S (+) is a skew symmetric operator.

A DCM from navigation or LTP to body frame can be formulated by using the
relation

r"=qxr’®xq =RI'r’ (6.7)

where r=[rX r rT is a three-dimensional vector, q=[q, @, q, q3]T is the unit

y z

quaternion,and q" =[q, -0, -0, —q3]T is the unit quaternion complex conjugate.

46

The resulting DCM is

0 +07 -0 -0 2(00,—d;) 2(00; + 00,)
Ri=| 2(d0,+0,0) G-+ -0 2(0,0,—0lh)

2(00% ~0) 2(%0+00) o —07 —aF +0 (68)
h T
Ry =(Ry)
The Euler angles are related to quaternions through the DCM as
RY(2,3 2
o= tant| 22 (23) :tan_l(2(9:5% +cioql)2j
Ry (3.3) O —C —0; +0;
0 =sin™(-R?(1,3)) =sin™ (-2(,d, — 90,) (6.9)
RY(1,2 2
” tan{ i)J:tanl{ 2(a0, +qzoq3)2J
R (1.1) Oo +0; —d; — 0
In order to maintain accuracy, the unit quaternion must be normalized after each
update by
q=—t (6.10)
qq
to ensure that ||g|| =1 at every time step.
2. INS Position and Velocity

In order to track the vessel’s current position and velocity, an accelerometer is
integrated through a series of equations that transform the measurements to the required
frame of reference. Position and velocity in the navigation and LTP frames are derived
here, as both frames were considered for implementation in the estimator design. The
following equations for position and velocity are based on the derivations described in
chapter 11 of [8].

As previously derived in Equation (5.10), the differential equation used to

estimate the vehicle’s position in the navigation reference frame is:

47

_ . _
. R, +h
? (MV+)
ﬁ - (RN+h;cos(¢) (6.11)

The LTP frame origin is locked into a constant location, therefore position can be

determined by directly integrating velocity:

t t

Xn Vn
P'=|y. | =|V. (6.12)
Z‘d Vd

To determine a vehicle velocity in the navigation or LTP frame it must first be

resolved in the ECEF reference frame:
VE=RIF®+g°-2(ofxV°) (6.13)
where ;, is the sidereal rate of the ECEF frame with respect to the inertial frame,

represented in the ECEF frame, and F° is the specific force as measured by an
accelerometer. Specific force (or g-force) is a non-gravigational force per unit mass with
units of acceleration (m/s?) that contains linear, centripetal, and gravitational components
of acceleration.

Since the navigation frame origin moves with the vehicle, the rate of change of
the navigation frame with respect to the ECEF frame represents the vehicle velocity and
is described by the differential equation

V' =R (@2 xVe)+V?). (6.14)

Substituting Equation (6.13) for V° results in
V' =RIF’+9" — (), +20f)xV" (6.15)

where w,. is the transport rate of the navigation frame with respect to the ECEF frame.

48

In the LTP frame, the rate of change of the tangent plane velocity with respect to
the ECEF frame can be described by

V, =R((@fxV®)+V°) (6.16)

e

where o; = 0since the LTP origin is in a fixed location.

Substituting Equation (6.13) for V°reduces Equation (6.16) to
Vi =RiF*+g' = 2(ayxV"). (6.17)
The LTP reference frame was selected as the desired design reference frame

onboard the SEAFOX Il as the boat normally operates in local waters and does not travel

significant distances in the course of a single mission.

3. SEAFOX Il IMU Model

The accelerometer and gyroscope in the IMU are not ideal sensors; they contain
multiple sources of error and noise. Identifying the characteristics of the noise and error
sources is a critical component of an accurate and robust navigation system. Table 2 in
Chapter Il lists the manufacturer’s analysis of the IMU noise and error statistics. By
sampling each IMU channel over a short time interval while the vehicle is stationary, the
lower bound of the noise statistics can be verified. Figures 18 and 19 are representative
measurements from each IMU channel over a 10 second sampling period, sampled at 100
Hz data output rate while the vehicle is stationary.

49

0 © son

._r.L._._._.
[

Accelerometer Noise Characteristics Analysis

[[p——

00 00 ® b0

10
10
b

|
|
i
[X u‘-o o
o o
1
9
|
e
®e

Mean
=-=-=-= Standard Dewiation
e
L J
)

:
ot

|
|
’
|
3
°
]
|
1
4
+
(]
|
|
|
l
’
'® 08 -‘.. 00 N 0

oome
!}

|

3

I

-
...

|

3

I
%S

=4 X '~ I]
| | | | | °
\77 L77777\777777\777777\7777
- i — k-
| | | | |
! | | I . L
| R e Measurement
é.o: 60.: m‘o“
B o @ %
l l l
L L L
1 5 6
Time [s]
I I I
: 00 : [] [] : [)
‘e .‘.’ *.’33‘:.. ‘.%
|
|
S i —————————]
l
- — - — = ———— =
o ‘
L) [
- \—.—— - i-.
| | |
L L L
1 5 6
Time [s]
| T
| |
niest -t 5 o
)] e o0 o
|

0.75

5
0.1p-—-
0.05) ——-—--

~ 1 © o W N S © ~
c ¢ o ¥ o c Q o o
o IS o S _
X A
s/l "4 [s/u] "

Time [s]
Figure 18. Measurements from the IMU accelerometer channels.
50

The standard deviation bounds shown in Figures 18 and 19 are the standard
deviations of the data set shown, not of the manufacturer’s specifications. Using
MATLAB’s standard deviation command std to analyze the data, the standard deviation

for each accelerometer channel while stationary is o, =[0.05 0.06 0.06] m/s* , which

corresponds to approximately 5 milli-g’s, a common unit for specific force
measurements. These standard deviation values are well within the manufacture’s 100
milli-g noise maximum. All of the sampled data points fell within three standard

deviations of the mean.

51

Gyro Noise Characteristics Analysis

x 10°

10
10

T [I T] T 19 S T] [l e
| m | ,_ _,m | [,_ _,u ,u
I I I A I I [e I
® % °, m,_ L | | !_ le |
| - 3 | " ® | o ! I I
H---o-4-1- m v Ho \\.\r\\nk.T\ - - - - -Lg-— O \\\T\\.Fw\‘A\\T __L®__|
o o) I I H ,m I [. S
Y 1S - o i1 _," | o .,_ 18 |
| (] <4 | i [| | o | 18 1 8
o, S % | " H) | 0! [H | e
| 8 g = | I is | | o . . 1®)
\\\\.J\AA \\\\\ © O ®H® \\O\Twwiv\ -1-®%--r--Jo© --¢---+t-B--4---+% -
e s s & | o'! 1 | ® o | [| [
° | [Iy 1 '8 | | | H |
o, H | ,“ “5 | ® L .,“ “,u e
u, ° 1 I H Hl [} s i H [
I i I o . . e I I 0o H I
T B Nt BRI s S S PS8 T
o 8 " I S I [i I
o “ "o o H P! I I ® e e
L e I I .10 I o o I I
S I P e °! il [I o i1 I e
l o — —@! — - a B8 ____1o© I N -3 1--_-_1L__ 1w L _L_ &3y _& 19 __ 1 §_1
N ”L, 4 l ," | ‘,H_ m,. | | ,_ 1 T. ,m
[| | u,. . e | | | o |
°, B e | ",_ 1 e | | i g |
| | Ty | [1! | iy | [1! |
o 1 | L ®, R s | L °, | .,- |
F---e¢- ¢ W - “HeT WP o i A - &1 v o i B R e
| | e | I . [1= | I .,w 4
| I = | ol [| = | o ! I o
°, e s " [I I] [I
LJ e ®, (I i le L " e e
Lo & N e < | gl o W | el _o: § -8 0 |
i i L o - S T i 4 1 T- re
°! e °! gi P | | i i ' 8
I I ° 8 H HENA S I !_ HL AP
I 3 ,m I I I I I [. I
| e | o,_ _,o | o m,k_ [N |
__ % N B, _ 1 L gL_ &1 & 1_° | _ __'m - _ §1_ N 19 _1___|
L4 ML, W e s, [1 'e | | [1 1 e
H |® 0, I | | | -,. - |
| [s m,_ [| e °! i1 1,8 Ie
I “ I L4 I /! Hy I e o ! le e
“, | o i1 1 | e [To [
—---%- -8 e N H-oeF-—-+--@-1----+®2-4 N \\\T\\!#\‘A\\ﬂ\\\f\\\
| | I g * g | o - CAL
Ll - I HEl s! e I i h e
I e I -,_ 1 I L ® _,m I
I I S " i [o i i @
| | P [| | L [1 i |
i1 i . iy A \\J\\\Q.T\ \;J*\\,\\\\l M el oy " dr--r®
° ° ° L] °
| [] | | i [| ., (| _,m |
I P @ I " P I ® I LI H S
Ll) = | - d P ® o | [A e
L | ° = L3 /! [| = | o ! 5 'e
o @ 1® o = L ell ilg | o = ! L e

[s/pei] d ‘arey |I0d
[s/ped] b ‘arey youd [s/pel] 1 ‘arey meA

10

Time [s]
and yaw rate channels.
52

Figure 19. Measurements from the IMU gyro roll rate, pitch rate,

Gyro measurements were acquired at the same time as the accelerometer
measurements. The gyro measurements are much better distributed around the mean than

the accelerometer measurements. Again, using MATLAB to analyze the measurements

the standard deviation in the three gyro channels are o, =[5x10* 35x10* 4x10*] radis,

all of which fall well below the manufacturer’s maximum noise output. Since the vehicle
was stationary during the sampling, the mean of each gyro channel serves as a good
estimate for initializing the gyro bias values. The initial bias of the gyro is not always the
same value when the gyro is initialized, so the bias must be measured at each restart of

the IMU in order to initialize the estimator with accurate values.

In an effort to reduce the sensor model complexity, all noise sources are assumed
to be zero mean Gaussian white noise. The error sources in each channel are assumed to
be additive which means that they can be lumped into a single term. To account for noise
sources that may vary with time, the derivative of the noise terms is assumed to be a
Gaussian white noise term which will introduce a random walk to the bias estimates:

F°=a)—g°+b, +v,

) 6.18
b, =V, ()

@y, = oy +b, +V, (6.19)
by =, '

The noise terms in Equation (6.18) and (6.19), v, ~ N (0,07) and v, ~N(0,07),

respectively, are assumed to be additive zero mean Gaussian white noise components of

the accelerometer and gyro measurements. The random walk is described by the zero

mean Gaussian white noise processes v, ~ N (O,o-fa) and v, ~N (O,afg) where the

o, and o, standard deviations are small tunable values.
a 9

C. MEASUREMENT MODELS
1. AHRS Measurement Model One

Accelerometers are commonly used as a means to correct drifting gyro

measurements, as the accelerometer is able to provide noisy, yet accurate estimates of
53

pitch and roll via the measured gravity vector, as long as the vehicle is not accelerating.
When a vehicle is accelerating, however, accelerometer measurements also include
components of linear and centripetal acceleration that are not individually measurable. By
making certain assumptions about the accelerometer measurements and introducing
information from the GPS, better pitch and roll estimates can be calculated and used to

correct the gyro measurements.

The first measurement model (MM1) investigated for this thesis estimates roll and
pitch by manipulating the accelerometer measurement model as shown in Equation (4.6)

to directly calculate roll and pitch angles. This approach is detailed in [20] and [21].

First, it is assumed that the Coriolis term is negligible, reducing the accelerometer

model to

dt

Making the assumption that the GPS measurements are obtained in the inertial

Fb:Wfdi—WW- (6.20)

frame, the LTP accelerations are calculated by differentiating the GPS velocities. The

north and east velocity components are calculated by

V! =V, cos(y)

VS =V sin(y) 620

where y is the GPS measured course over ground and V; is the GPS measured speed of

the vehicle.

The differentiation is carried out in simulation using the 3" order filter described

in Equation (4.3) and depicted in Figure 12 in Chapter IV. Defining the GPS acceleration

vectors as Agps = [aGPS]X Agps.y aGPS'Z]T , Equation (6.20) can be rewritten as

F® = RY(Asps —0')- (6.22)

The rotation matrix from LTP to body frame is then manipulated to define a new

.
vector rGPS:[rX r, rJ ;

54

Agps x COS(¥) + 8gps, , SIN (v)
F*=R,R,R, (Asps —9') = R,R, | —agps., Sin (1) +agps , cOS (')
Bges.: = 9]
co 0 -s@|r

X

F'=|spsd cp cOsp||r

y
cpsld —sp cech || r

z

(6.23)

Since course over ground, v , is an output of the GPS, an analytical solution can

be found to solve for pitch and roll. Pitch is first determined by manipulating

F, =r,cos(6)-r,sin(0) (6.24)
from the first row of Equation (6.23) to solve for &, which after some manipulation

yields

2
1, £ FO 07 12 —(FP)

G

X

6=tan™

(6.25)

Using this pitch value, roll can then be determined. The second row from
Equation (6.23) can be rewritten to

F, =r.sin(6)sin(p)+r,cos(p)+r,cos(0)sin(p)

F) =r,sin(p)+r, cos(p) (6:20)
where
r, =r,sin(8)+r,cos(6) (6.27)
Solving Equation (6.26) for roll yields
- rr, £ FPr +r) —(Fyb)2 628)

(Fvb)2 1

The measurement input vector for attitude estimation can now be formed as

55

tan™

) rgry—l:y”,/szrr;—(Fy'“)2 |
G

I
F) -

¢ 1, + P2+ = (R)2
Zyrsy =| € |=|tan — (6.29)
W (FX) -
Yeps

] |

where the sign in front of the square root for pitch and roll is determined by the reference

frame used. For the North-East-Down LTP frame, the signs are as shown.

This method provides good estimates of pitch and roll, but loses accuracy in roll
estimation when the Coriolis term is large, which happens during sharp turns. If the

assumption is made that angle of attack « =0 and sideslip g =0 then it follows that the
velocity in the body frame can be simplified to
V; cos(a)sin(B) | | V;

u
VP=lv|=| V,sin(B) =10 |. (6.30)
w | | V;sin(a)cos(B) 0

Adding the simplified Coriolis force term back into the accelerometer

measurement model yields:

V
b bdt p ! b At
F’=R aV +1q|x] 0||-R’g". (6.31)
r 0

The calculation for pitch angle remains the same as Equation (6.25), but for roll

the calculation becomes:

F, =r.sin(@)sin(p)+r, cos(¢)+r,cos(0)sin(p)+V,r

_ (6.32)
F., =(F =Vsr)=r,sin(p)+r, cos(¢)

where the Coriolis term is absorbed into the accelerometer termas F_ .

56

Finally, Equation (6.28) is adjusted by substituting in F_ for Fyb yielding:

p=tan™

rr+F Jrierz—(F.)
oy T yfly t1 =,y
2

Iy

(Fe,)

The new measurement vector for MM1 then becomes

Zpvrs1 =

T S
I

tan

tan~

2
2 2
rr, + Fc’y\/ry +1;-(F.)
2

(Fc,y) _r€2

—rr - Fxb\/rx2 +r? —(Fxb)2
(Fe) -+
Yaps

(6.33)

(6.34)

Figures 20 and 21 illustrate the accuracy of MM1 with the added Coriolis term as

measured from Condor simulation data. Without the added term, the roll measurements

overshoot, which requires judicious tuning of the noise matrix during tight turns. To

avoid having to develop an adaptive tuning technique, the Coriolis term method is used in

MM for subsequent estimator testing.

Figure 20 compares the true roll angle value from Condor with roll angles

computed both with and without the Coriolis term added. Since the addition of the

Coriolis term as previously defined has no effect on pitch, only one measurement is

compared against Condor’s true pitch angle values.

57

Measurement Model 1, Roll Comparison

No Coriolis Term
w/ Coriolis Term

Truth

2c Std Devation

[6ap] 1104

140

100

Time [s]

Figure 20. Roll measurements as approximate from MM1.

Measurement Model 1, Pitch Comparison

T T T T T T T T

| | | | | | |

S| ’ | | | |

e AN | | | |

5} S| | | | |

£ L\ I I I I

o o), | | | I
=] T T (TR [A

%;ht&, | |

Q3 p|! | |

Sk I I

| | |

| | |
Ll ® IS R . L __ _ [P

| | |

| | |

T | | |

| | | |

| | | |

| | | |
- o 47 e B T [—

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |
o mim— - — = - e agee = — — — — — |~ — — — Bt Bty

| | | |

| | | |

| | | |

| | | |

| | | |

| | | |
L < ' 5 et N R [A

| | | |

| | | |

| | | |

| | | |

| | | |
-, Y [

| | |

| | |

| el |

oope - . | |

| ~ | |

! ! ! X o ommodl

I I I > CRot
. o o o 4 o o ¥ 0 o
S oS o o S & © 9 ¢ 9

[6ap] youd

140

Time [s]

Figure 21. Pitch measurements as approximate from measurement model 1.

58

The standard deviation of the measured pitch and roll values was calculated by
the general standard deviation equation:

19 2
o= WZ(Xi — 1) (6.35)
where the mean « is assumed to be the true value of pitch or roll at each time step.

This yields pitch and roll standard deviations of o, =0.03 rad and o, =0.06 rad.

The 2o values for pitch and roll are plotted in Figures 20 and 21 and show that the
measurement estimates generally fall within that bound. This allows for pitch and roll
sensor models to be approximated as the true values plus zero mean Gaussian white

noise:

P=0+V,, vq;N(O,aj) (6.36)
0=0+v,, v,~N(0,0,) '
The measurement estimate that approximates roll, pitch, and yaw measurements
based on the current state estimate is
I 2(4,4, +4,9
tan_l[2(%5: goqlA)Zj
o =G —Q; + G,
= Sin_l(_z(dlq?, _qo(jZ)) | Ve (6.37)
tan‘l(z(qlqz"'qoqz)] Yy

22 22 ~2 A2
QO+q1_q2_q3

> D

Zpvrs1 =

<

The measurement noise matrix for this measurement model is then defined as

0'; 0
Ranrs 1= 0 o
0O O

DSl N

0

0 (6.38)
o,

2. ARHS Measurement Model Two

Instead of trying to create a better external measurement to compliment the gyro,

measurement model two (MM2) utilizes the available states to approximate the

59

accelerometer output. As in Equation (4.6), the accelerometer is assumed to have a sensor
model of

F*=(RV'+ap xRV' =RPg')+b,, +v,
: (6.39)
v, ~N (0,0'azs)

The DCM from the LTP to body frame is constructed using the quaternions from
the AHRS state vector. The LTP velocity and accelerometer bias terms are acquired from
the INS module state vector. The angular rates and acceleration terms are treated as
system inputs to the equations. The angular rates are measured from the gyro with current
bias estimates and sidereal rates removed. The linear accelerations are created by
differentiating the GPS velocities. Including the yaw estimate, the full measurement

model yields:
b litbAGPS+((a)€t-BQS)XFEtb\it)_Iitbgt_{_Bas
A Voo
Z = = A A A A +
e { v } tan'l(Azz(ql?i +quoq3;)2] {Vw }
0o+ -0Q; -5
V., ~N(0,0%,) . (6.40)
Vr// ~N (O’Gui)

T

with associated measurement noise matrix

(6.41)

Figures 22-24 show accelerometer estimates generated using perfect state
estimates, but noisy GPS acceleration and gyro measurements. All measurements were

obtained via Condor simulation.

60

Acceleration X-channel Measurement and Estimate Comparison

T T T T T T T T
- | | | | | | |
% | | | | | | |
| | | | | | |
[0} = | | | |
= 9
Ml ® 51~ Lo +- -
E @ |
= © |
n 9 |
w = loney D00emm = o 002 |
— — ‘Gete % Po .
e @ +- -1
= e |
L QO |
§5 |
88| ~F |
Lo ©F--1-- pomees | 1 _]
o o |
o O |
< < |
|
|
° |
|
|
|
|
T P oo cammee 7]
| |
| |
| |
| |
T o s w e eqm — — T — — —
| |
| |
| |
| | |
F-———+——— 4= - -4 - - -4
| | |
| | |
| | |
| |00 |
\\\\f\\\#\\\mw S o Bemg o 2ot o csoeeh — |
| oo esoomdy
| | ...m? |
| | %% (o0 0000 |
| oo |
Sopee e o s I
[0 — 0 S 0 — 0 o 0
= S = < o

ﬁmw\c: uoneIs|8IdY xu_

90

80

70

30

20

10

Time [s]

comparison using the equations from MM2.

Figure 22. Acceleration X-channel

Acceleration Y-channel Measurement and Estimate Comparison

Accelerometer Measurement

Accelerometer Estimate

A
Hmm\c: uoneIa|e2dy 4

90

Time [s]

Figure 23. Acceleration Y-channel comparison using the equations from MM2.

61

Acceleration Z-channel Measurement and Estimate Comparison

: : : T T T T
e Accelerometer Estimate
Accelerometer Measurement

[m/s?

FZ Acceleration

Figure 24. Acceleration Z-channel comparison using the equations from MM2.

It is clear from Figures 22-24 that the GPS acceleration estimates and gyro
measurements contain more noise than the actual accelerometer measurements. Though
noisy, the mean of the estimates contain the true value of the acceleration in each channel

and are therefore a good representation of the accelerometer measurements.

3. INS Measurement Model

The measurement models for the position and velocity corrections are
straightforward and do not require any unique mechanics. The estimates are pulled
directly from the INS module state vector and compared to the GPS output. The GPS
position and velocity measurements are assumed to be contaminated with additive zero

mean white noise:

62

x>

N>
o

" (6.42)

> =
+
< < < <
<

Zins =

>

>

@
<

>

o
<<

The PSD for the noise values in Equation (6.42) are located in Chapter IV Table 4
for Condor simulated data and Table 5 for SEAFOX Il data. These values are used to

form the measurement noise matrix

o> 0
Rins :[' ¢ 3)] (6.43)

2
0(3><3) Ov

ComNav Vector G1 Sensor Specifications

Sensor Noise PSD
GPS Position v, ~ N (0’(5 m)z)
GPS Velocity v, ~N (0’(0'5 m/s?)2)
Table 5. Noise characteristics for the SEAFOX Il GPS sensor, after
[4].

D. EKF EQUATIONS

1. AHRS

As discussed in Chapter Ill, the extended Kalman filter requires first order

derivative matrices to project the state, measurement, and covariance estimates. The

AHRS process model is defined as

63

XAHRS = fAHRS (XAHRS’U’V) =

0 -0 -o, -o]
0 —
{q} 1 “s T (6.44)
S l=l2|e, —o, 0 o
t)g
w, ® - 0
Vo,

where u is the process (gyro) measurement and v is the process noise.

According to the sensor model in Equation (6.19) the gyro measurement is:

@,
o) =| o, |=a - ba)(;—bg—vg (6.45)
23

The state process Jacobian is formed by taking the partial derivative of the state
differential equation with respect to each state, linearized around its current value, with

noise terms equal to their expected value of zero:

= % = cR™
ARHS K~ oy 1 "ARHS k
ARHS (%, uy)

Hogs Oagus O pris Ofaras Ofagess |- (6.46)
Farrs x = 0% ao aq, 0od, ob,
O(le) 0(3x1) 0(3><l) O(3><1) O(3><3)

The state excitation process Jacobian is formed by taking the partial derivative of
the state process model with respect to the noise states, linearized around the current
value of the state estimates:

of «
GARHS,k = o8 A ' GARHS,k eR™
(XARHS kil ,v)
Ko (6.47)
(3x3)
GARHS,k = 9
()(3x3) |(3x3)

The state process and excitation Jacobian calculations are performed using

continuous time equations. The EKF is run in discrete time, with discrete measurements,

64

therefore the state process and excitation matrices must be discretized. The following
method for continuous state discretization is outlined in chapter 4 of [8] and utilizes

matrix exponentials.

First, the matrix containing the process and excitation matrices is formed:

-F G G’
Ek :{O k kQIA:HTRS k :IT (6.48)
(7><7) k
where
02 O 3x3
Quarrs = ’ (2) (6.49)
O(3><3) Jbg

is the process noise matrix, and T is the filter time step length.

Next, the matrix exponential is performed using the MATLAB expm function:

Y=¢f :{ D % Qdk} (6.50)

D is a dummy variable, Qd, is the discrete time state excitation matrix, and ®, is
the discrete time state transition matrix at time k.

The discrete time state excitation matrix and state transition matrix can be easily
extracted from Equation (6.50) for use in the EKF error covariance time propagation
equation:

Pea = @R @, +Qd, (6.51)

Lastly, the measurement process Jacobians must be formed. The Jacobian of the

first measurement process model, from Equation (6.37), is linearized with respect to the
current estimates of the states, and given by

_ 6ZAHRs,l

HAHRS,l,k - ax

0z 0z 0z 0z
:|: SHRS,l gHRS,l SHRS,l SHRS,l O(3X3)) (652)
(X .9) % % G 0

ARHS

65

The second measurement model process, given by Equation (6.40), is linearized
to give:

Ax7
H AHRS 2k € R

(674
H prirs .2 = GQHRS’Z = . (6.53)

AHRS (XAAHRS,k ,0)

azAHRS,2 aZAHRS,Z aZAHRS,Z azAHRS,Z azAHRS,Z azAHRS,Z aZAHRS,Z

aq, oq, aq, 0Q, ob ob ob

9.p 9.9 g.r

The process, excitation, and measurement Jacobian matrices are extensive. The
Appendix contains the MATLAB code for the EKF used in this analysis.
2. INS

The formation of the INS process model follows the same method used for
developing the AHRS EKF equations. The state process model is defined from Equations
(6.12), (6.17), and (6.18) as

X|Ns = les (Xle’u’V):

pt V!
: . (6.54)
Vi [=| R(F*)+g' —25 (V"
ba Vba
where
FP=F°+Db, +v,. (6.55)
The Jacobian of the state process model is then defined as
Finsx = g v Finsk € R™
aXINS ()EINS,kvuk)
Osay lsg) Qs | - (6.56)
Finsx = 0(3><3) S(a);) -R;
0(3><3) O(3><3) 0(3><3)

The Jacobian of the state excitation matrix is defined as

66

of
GINS,k =18

9x6
) GINS,k eR

(Xle kol ,v)

Osg) Oz . (6.57)
GINS,k: _Rttj 0
0 |

(3x3)
(39) (3:9)

The discrete time propagation matrices are formed using the same process from
the AHRS estimator. The measurement process Jacobian is trivial since all the

measurements are assumed to contain additive white noise:

6x9
H\ €R

= [I(6><6) O(6><3):| .

(Xns.1c0)

_ Oz (6.58)

INS ™ ax s

E. UKF

Perhaps the largest benefit of using the unscented Kalman filter is the simplicity
of the process time propagation and measurement updates. Instead of forming complex
Jacobians to estimate the process and measurement models, the differential equations
from Equations (6.44) and (6.54) are directly integrated using first order Euler integration
methods. The augmented state vectors for the AHRS and INS modules accommodate the

zero mean noise sources and are initialized according to Equation (3.35) as:

X s 10 = E[X arsio]
)Zf\HRs,l,o = [X;HRS 1,0 0(1><3) O(lXS)]
X arRs 20 = E I: X AHRS,Z,O]
X :HRS,Z,O = PZ ZHRS,Z,O 0(l><3) 0(1><4) T
Xinso=E[Xnso |

- A i
XlaNs,o = [XlTNs,o 0(1><3) O(l><6):|

The standard UKF and SR-UKF use 2L +1 sigma vectors to calculate the process

, (6.59)

(6.60)

(6.61)

mean and covariance and the SSUKF and SR-SSUKEF utilize L+2 as discussed in

67

Chapter 111, where L is defined as the number of augmented states contained in the
respective augmented state vector. Each variant of the UKF was built in accordance to
the outline in Chapter 111, the MATLAB code for which is available in the Appendix.

68

VII. DISCUSSION AND RESULTS

A. OVERVIEW

In order to determine the qualities of each Kalman filter covered in Chapter IlI,
each estimator design was test with a common data set captured in the Condor simulation
environment. Five Kalman filters and two attitude measurement models, equaling ten
total navigation estimators were evaluated. Each estimator was initialized with identical
state and covariance estimates, but with individually tuned measurement and process
noise values that best enabled each filter to track the true value of the estimated states.
First, each estimator was evaluated based on computation time of an identical data set to
test for filter efficiency. To test for accuracy, each estimator was initialized with the true
gyro and accelerometer bias values and evaluated on convergence to the true state values.
Next, to test for robustness, each estimator was initialized with arbitrary gyro and
accelerometer bias values and again evaluated on convergence to the true state values.
Each estimator was then ranked by performance in a series of weighted categories to
determine the best overall design. Lastly, the EKF and top ranked unscented Kalman

filter were evaluated against SEAFOX Il data.

B. FILTER TUNING

Perhaps the most time consuming portion of most Kalman filter design is properly
tuning the measurement and noise matrices. Instead of iteratively evaluating entire data
sets with constant test values for the noise and covariance matrices, each filter was tuned
online by adjusting a series of gains while evaluating their real time effects on the state
estimates in the Condor simulation environment. The PSD noise values used in the
Condor simulations are summarized in Table 6. The AHRS process and measurement

noise matrices for both MM1 and MM2 are initialized as:

69

QAHRS:diag([O-gzs O-gzs 055)
Rus: = diag ([ko? ko7 kel) (6.62)
Rus 2 =diag (ko2 ko?, kol kol)

with INS estimator process and noise matrices initialized as

Qus = diag([ofh ol aib])
R|Ns,1:diag<[ks30'1g keor kiop kllg\fn klZG\Z leO-\Z J) (6.63)

Rle,zzdiag([kmo-g leGE leGE k170'\3n leG\Z klga\z})

Noise Characteristics for Simulation Sensor Outputs

Sensors Noise PSD
Gyro o2 =(0.01 rad/s)’
Accelerometer o2, =(0 1rad/s)2
FP)
Measured Euler Angles U; :(0.03 rad)2 o :(0.06 rad)z ,glﬁ :(0,001 rad)2
GPS Position o2 =(3m)’
GPS Velocity ol = (0.3 m/52)2 ol = (0_3 m/SZ)Z o2 = (0.001 m/sz)z

Table 6. Noise variance values for process and measurement noise
in the Condor simulation environment.

All gain values in Equations (6.62) and (6.63) were scaled from a value of one to
the final values listed in Table 7. The ratio of process noise to measurement noise
determines the level of “trust” in the aiding sensor measurement by roughly scaling the

Kalman gain according to

«Q
Koc 2 (6.64)

70

Large values for measurement noise result in a small Kalman gain allowing the
process and process sensors to integrate with minimal correction. Small values for
measurement noise increase the Kalman gain introducing large corrections to the process.
Since the aided sensors are also corrupted by noise and error, the measurement gain had

to be carefully tuned in order to avoid over correction and excess noise introduction to

the system.
Process and Measurement Noise Scaling Factors
Gain EKF UKF SR-UKF SSUKF SR-SSUKF

Ky 1 0.05 0.025 0.05 1
I k 1 0.005 0.025 0.005 1
= ks 1 1 1 1 1
=R Ks 1 0.001 0.01 0.001 0.01
85 ko 1 0.001 0.01 0.001 0.01
E = Ko 1 0.001 0.01 0.001 0.01
3__: K11 1 0.005 0.005 0.005 0.01
< K1z 1 0.005 0.005 0.005 0.01

Kis 1 1 1 1 1

Kq 1 0.025 0.02 0.25 5
= Ks 1 0.025 0.05 0.25 1
2 Ke 1 0.01 0.1 0.1 1
SN ks 1 1 1 1 1
83T K14 1 0.001 0.001 0.0001 0.001
S § Kis 1 0.001 0.001 0.0001 0.001
0 Kie 1 0.001 0.001 0.0001 0.001
T K17 1 0.005 0.005 0.005 0.01
< Kig 1 0.005 0.005 0.005 0.01

Kig 1 1 1 1 1

Table 7. Final process and measurement noise scaling factors.

Comparison of scaling factors associated with the EKF and UKF variants is
difficult as the filter mechanics are different. The EKF Kalman gain is directly scaled by
the measurement noise matrix whereas the UKF Kalman gain is indirectly scaled by the
process and measurement noise matrices which are incorporated into the process of sigma
point selection. With the exception of the SR-SSUKF, the remaining UKF variants are all

scaled on or near the same order of magnitude.

71

It should be noted that the EKF designed with AHRS measurement model 2 is left
out of all subsequent analysis as EKF(2) was completely unstable for all evaluated tuning
gains. The instability was due to the high nonlinearity of the measurement model

equations.

C. FILTER COMPUTATION SPEED COMPARISON

The largest detractor from the unscented Kalman filter and related filters (e.g.
particle filter and Bayesian filter) is the number of iterations required to compute a single
time step. In general, the number of UKF iterations per cycle is scaled based on the
number of states being estimated. The standard UKF and SR-UKF use weights that
require 2L +1 iterations, where L is defined as the number of states plus the number of
measurement noise terms and the number of process noise terms. The SSUKF and SR-
SSUKE utilize the Spherical Simplex weight set which only requires L+2 iterations per

cycle. The total iterations per cycle for each estimator module are listed in Table 8.

Module UKF & SR-UKF SSUKF & SR-SSUKF
AHRS (Model 1) 27 15
AHRS (Model 2) 29 16
INS 37 20

Table 8. Number of iterations per time step of each UKF variant for

the given estimator design.

To evaluate the overall speed of each filter, an experiment was designed in
Simulink to run a 10 second data set from Condor through each filter. The MATLAB
functions tic and toc act as a high accuracy CPU stopwatch and were executed in the
simulation start function and stop function callback, respectively, to measure the elapsed

time for each filter. The results from this experiment are shown in Figure 25.

72

CPU Processing Time Vs. EKF(1)

UKF(2)

SR-UKF(2)

UKF(1)

SR-UKF(1)

SR-SSUKF(2)

SSUKF(2)

Kalman Filter (Measurement Model)

SR-SSUKF(1)

SSUKF(1)

0 50 100 150 200 250 300
Percent (%) More Computation Time Than EKF(1)

Figure 25. Comparison of relative computation time of a 10 seconds data set run in
Simulink against the EKF(1) run time.

The results shown in Figure 25 are not surprising in that the unscented filters with
spherical simplex weights outperformed those with standard weights as the spherical
simplex method employs fewer sigma points and thus less iteration per time step. The
SR-UKF and SR-SSUKF implementations were expected to slightly outperform their
counterparts as the linear algebra operators that form the square root implementation are
more efficient than the Cholesky square root operator. This result was true for the normal

UKF sigma point scheme, but not so for the spherical simplex.

A second test for computational efficiency was run to minimize any
computational overhead that may have come from using Simulink and its discrete time
solver. Each estimator was built in the form of a MATLAB function file and was run in a
script with a random vector input to measure the time of a single time step, again using
the tic and toc MATLAB functions. Each estimator was run 25 times, the times of which
were normalized against the EKF(1) run time and shown in Figure 26.

73

CPU Processing Time Vs. EKF(1)

UKF(2)

SR-UKF(2)

UKF(1)

SR-UKF(1)

SSUKF(2)

SR-SSUKF(2)

Kalman Filter (Measurement Model)

SR-SSUKF(1)

SSUKF(1)

0 50 100 150
Percent (%) More Computation Time Than EKF(1)

Figure 26. Comparison of relative computation time for a single iteration of each
estimator function against EKF(1).

Running each estimator as a function call in MATLAB resulted in a significant
increase in speed performance from the unscented filters. The largest performance
increase came from UKF(2) and SR-UKF(2) which improved by 132% and 138%,
respectively. The smallest improvement came from UKF(1) with a decrease of 35%
computation time. While it is difficult to pinpoint what exactly differs between
MATLAB and Simulink execution of certain function calls, what is apparent is that it is
possible to reduce the relative computation time of an unscented Kalman filter to near

EKF speed depending on the efficiency of the software used to execute the filter.

The MM2 estimators were expected to have increased computation times
compared to their MML1 counterparts as there are slightly more sigma points to calculate

and the formation of the measurement estimate Z,.,.,, from Equation (6.40) requires

multiple rotation matrices and a cross product.
74

With the exception of the SR-SSUKF(1) estimator, the square root
implementations outperformed their non-square root counterparts in Figure 26 by a wider
margin than those in Figure 25. This may be due to differences between MATLAB and

Simulink execution of the QR decomposition and Cholesky Update operators.

D. ATTITUDE PERFORMANCE

Two experiments were carried out to analyze the attitude performance of each
estimator. For each experiment the filters were fed the same Condor data set and
initialized with the same state and covariance estimates. For the first experiment, the gyro
and accelerometer bias values were initialized to their true values. For the second
experiment, the gyro and accelerometer values are initialized to zero and the covariance

was adjusted to reduce trust in the bias channels, as shown in Table 9.

75

State and Covariance Initialization Values

Initial Estimate

AHRS Module Experiment 1

Attitude Q(O) = [0.9529, 0.0055,-0.0172, 0.3029]
Gyro Bias b, (0)=[2.4x10*,-1.0x10™*,2.0x10* | rad/s
Covariance

Pys (0) = diag ([10-5 10°8 ,10-5,10-5,10-6,10-6,10-6])

Initial Estimate

AHRS Module Experiment 2

Attitude Q(O) = [0.9529, 0.0055,-0.0172, 0.3029]
Gyro Bias b, (0)=[0,0,0] rad/s
Covariance

Bs (0) = diag([10°,10°,10%,10°,10°,10%,10°)

Initial Estimate

INS Module Experiment 1

Position

X" (0) =[3.8047x10",~1.095x10°,1.4180x10° | m

Velocity

V" (0)=[25,17,0.6] m/s*

Accelerometer Bias

b, (0)=[15x10?,-1.5x10?,1.0x10°* | ms?

Covariance

By (0) = diag ([10°°,10°,10°,0°,10°,10°,0°,10°,10°°]

Initial Estimate

INS Module Experiment 2

Position

X" (0) =[3.8047x10°",~1.095x10°,1.4180x10° | m

Velocity

VP (0)=[25,17,0.6] m/s®

Accelerometer Bias

b, (0)=[0,0,0] m/s?

Covariance

A

Bys (0) =diag ([10°,10°°,10°,10°,10°,10°,10°,10°,10°])

Table 9.

Initial state and covariance estimates used initialize each
navigation estimator.

76

As the SEAFOX 11 is natively able to produce a well filtered estimate of heading
from its multiple GPS receivers, the main focus of this section will be to evaluate roll and
pitch estimation. Figure 27 highlights each estimator’s performance at the peak of a high
rate turn from the first experiment’s data set. The top graph shows MM1 estimators and

the bottom section shows MM?2 estimators.

High Rate Turn Roll Comparison, Bias0 = BiasTruth
= i
@
S
9 i
()]
[
< i
e
x -
EKF(1)
16 | | | | | | UKF(1)
166 168 170 172 174 176 17| — SRUKF(
Time [S] —— SSUKF(1)
—— SR-SSUKF(1)
W Truth
= i
[}
S
P i
()]
C
< i
e
x -
UKF(2)
16 < ‘ ‘ L L ! \ SR-UKF(2)
166 168 170 172 174 176 17 SSUKF(2)
Time [S] SR-SSUKF(2)
****** Truth

Figure 27. Roll angle estimates during a high rate turn with MM1 (top), MM2 (bottom).

The EKF(1) is the noisier of the MM1 AHRS estimators, but accurately captures
the true roll value within the noise. The UKF(1) does not distinctly appear on either plot
because it is practically identical to the SSUKF(1) values which is a surprising result in
that the SSUKF(1) utilizes nearly half the sigma points as the UKF(1) estimator. A

cleaner distinction between normal sigma points and spherical simplex sigma points is

77

shown in the SR-UKF(1) and SR-SSUKF(1) where the SR-UKF(1) is able to more
closely follow the true roll value in high rate turns, but the SR-SSUKF(1) is slightly
smoother. On the bottom plot of Figure 27 UKF(2) and SSUKF(2) perform the best in the
turn nearly matching the true roll value, but have the slowest convergence time at
initialization as shown in Figure 28. The SR-SSUKF(2) while containing less variance
than the EKF(1) is the worst performer in the turn at nearly a degree off for the duration

segment shown.

Figure 28 shows the convergence time of each estimator, again the top plot

represents MM1 estimators and the bottom plot represents measurement MM2.

Initial Roll Angle Convergence Comparison, Bias0 = BiasTruth
1
S 05
S
(] v
D OfF-FFidm T
<
= EKF(1)
0? O'Sﬁ UKF(1)
SR-UKF(1)
-1 | | | | | | SSUKF(1)
0 5 10 15 20 25 30 3 SR-SSUKF(1)
-rime [S] ****** Truth
1
S 05 1‘ H"A -
=) Al | [U "
= | y it s AT o
K | | W 71 e My "U‘ lllw ’l') M 4/ i ./ ‘l & S
= Of-----+ “%* T it ol i A W - — -~ 11— — - - — AW Ak
= N) M/MWMW%
5 05 T |
M UKF(2)
-1 ! ! ! | | | SR-UKF(2)
0 5 10 15 20 25 30 3 SSUKF(2)
Time [S] SR-SSUKF(2)
****** Truth

Figure 28. Roll angle estimates with MM1 (top), MM2 (bottom).

78

The EKF(1), SR-UKF(1), and SR-SSUKF(1) converge on the true value
immediately whereas the UKF(1) and SSUKF(1) converges to within a standard

deviation of the roll angle as calculated from the accelerometer approximation in AHRS

MM1, after 35 seconds. Similarly

the UKF(2) and SSUKF(2) have the slowest

convergence time of the second measurement model group, but the UKF(2) is able to

converge in 10 seconds where the SSUKF(2) converges again at 35 seconds.

Next, the pitch estimates from the first experiment are shown in Figure 29 and 30.

Figure 29 contains the estimates from MM1 and two in a high rate turn, and Figure 30

shows the pitch estimate convergence.

High Rate Turn Pitch Comparison, Bias0 = BiasTruth
g il
Py M‘E&A 'l bl |J1
=y i, f l A l ﬂ
< W ’ f‘ ’i 1 r| r kA
< g I i
g ';w. y w EKF(1)
o 'i UKF(1)
‘ ‘ ‘ ‘ ‘ SR-UKF(1)
SSUKF(1)
160 165 170 175 180 185 190 195 200 205 SR-SSUKF(1)
Time[s] |- Truth
— OF i
> ‘f o o,
(O] J
%] L‘ i t i I iU l i,v J 'P(;'v‘ n ’
= N p - \ A ’ .
g2y I y ?‘" o Yf' i v, v
E " -; liv‘flfl ‘IEJ H' Il H Y {H ’ k w
= | :!
o -4 v UKF(2)
SR-UKF(2)
160 165 170 175 180 185 190 195 200 205 SSUKF(2)
Time [S] 777777 iz—jSUKF(Z)

Figure 29. Pitch angle estimates during a high rate turn with MM1 (top),

MM2 (bottom).

79

EKF(1)
UKF(1)
SR-UKF(1)
SSUKF(1)
SR-SSUKF(1)
Truth

Initial Pitch Angle Convergence Comparison, BiasO = BiasTruth

l T T
'a -
[}
K=
© i
(@)
2 L J WL a

AR AR i
g yixa e ii i b“'m,—.?, i
8
=
|
30

1
=)
(3}
K=
2
(@)
c
<
e
8
=

_4 | | | | | |

0 5 10 15 20 25 30
Time[s] |

UKF(2)
SR-UKF(2)
SSUKF(2)
SR-SSUKF(2)

Figure 30. Pitch angle estimates with MM1 (top), MM2 (bottom).

The EKF(1) for pitch angle estimates has significantly higher variation than the
unscented filters. Both sets of estimators appear to give very similar results for pitch
estimation. The square root filters contain slightly more variation than the UKF(2) and
SSUKF(2) filters. The biggest difference between the two measurement models for pitch
estimation happens from time 170 to 185 seconds in Figure 29 where the model one
estimators underestimate the pitch and the model two estimators overestimate the true
pitch values. This is due to the assumptions made calculating the measured pitch values
from MM1 where the Coriolis term only aids the roll measurement resulting in slightly

underestimated pitch moments.

80

A more realistic test of each estimator’s performance is with unknown gyro and
accelerometer terms as in most cases the true accelerometer and gyro biases and error are
rarely known without expensive bench testing. The gyro and accelerometer biases are
integral to the measurement and process equations which can lead to filter divergence if
the bias estimates are poor and the errors not constantly driven towards zero. Figures 31
and 32 capture the same roll angle highlights from Figures 27 and 28 to show a

comparison of robustness.

High Rate Turn Roll Comparison, BiasO =[0]

=)
@
S,
- |
o)
c
= |
3
X EKF(1)
UKF(1)
16 SR-UKF(1)
166 168 170 172 174 176 17 ssukr
Time [s] —— SR-SSUKF(1)

****** Truth

Roll Angle [deg]

UKF(2)

| | | | | | SR-UKF(2)
166 168 170 172 174 176 17 SSUKF(2)
Time [S] SR-SSUKF(2)

Figure 31. Roll angle estimates for MM1 estimators when gyro and accelerometer
biases are unknown during a high rate turn (top), MM2 (bottom).

81

Initial Roll Angle Convergence Comparison, Bias0 =[0]

,m",‘lﬂ i) i ks
| FMNN m l|h.i ﬂwﬂ

Roll Angle [deg]
o
== %_;:—
-

-0.5
EKF(1)
-1 ! ! ! ! ! I UKF(1)
0 5 10 15 20 25 30 3 SR-UKF(1)
Time [s] SSUKF(1)
SR-SSUKF(1)

****** Truth

Roll Angle [deg]

UKF(2)
! | SR-UKF(2)
0 5 10 15 20 25 30 3 SSUKF(2)
Time [S] SR-SSUKF(2)
****** Truth

Figure 32. Roll angle estimates for MM1 estimators when gyro and accelerometer
biases are unknown (top), MM2 (bottom).

Each filter displayed slightly less accuracy than in the known bias case, but
surprisingly the SR-UKF which for the known bias case performed the best, for both
measurement models performed the worst and slowly diverged in the SR-UKF(2)
implementation.

The pitch estimates, shown in Figures 33 and 34, follow a similar trend to the roll
estimates in that for the most part all the estimators are slightly less accurate, but the SR-

UKF for both measurement models performs the worst.

82

High Rate Turn Pitch Comparison, Bias0 =[0]
= |
@
=, n
Qo
sy
C
< |
e
Q EKF(1)
o UKF(2)
SR-UKF(1)
| | | | | | | | | SSUKF(1)
160 165 170 175 180 185 190 195 200 205 SR-SSUKF(1)
Time [S] ****** Truth
2
3
0 P RELPTAG 8
E j’LJ/\/v;\\\‘i\jH »J‘l /‘J / S v y *
o W h \@V%/f\ i W Ay 4 L L
2 L A) P! AT APAT!
< -2 K)7 4 «(\ l.". v',flh N L) ’\ﬂ A I h.' .N .l{ / |.v
S w}ﬁ@? Yo N It
= S
.
& -ar UKF(2)
| | | | | | | | | SR-UKF(2)
160 165 170 175 180 185 190 195 200 205 SSUKF(2)
Time(s] | irr:-jsumz)

Figure 33. Pitch angle estimates for MM1 estimators when gyro and accelerometer
biases are unknown during a high rate turn (top), MM2 (bottom).

In Figure 33, the SR-UKF(1) pitch estimates initially diverge, then slowly begin
to converge during the high rate turn which indicates that the bias’ are not diverging for

the entire duration of the data set.

83

Initial Pitch Angle Convergence Comparison, BiasO =[0]

Pitch Angle [deg]
N

****** Truth

EKF(1)
UKF(1)
SR-UKF(1)
SSUKF(1)
SR-SSUKF(1)

Pitch Angle [deg]

Time [s]

UKF(2)
SR-UKF(2)
SSUKF(2)
SR-SSUKF(2)

Figure 34. Pitch angle estimates for measurement model 2 estimators when gyro and
accelerometer biases are unknown (top), MM2 (bottom).

The relatively poor performance of the SR-UKF estimator and the difference

between the two variants is explained best by viewing the estimated bias error in Figure

35. The AHRS module for both measurement models largely depends on accurate gyro

bias estimation. Figure 35 shows the root mean squared (RMS) error of the residual

between the true gyro bias and estimated bias.

84

x 10~ SR-UKF(1) Gyro Bias RMS Error

8 12+ b H
= X
5 10+ b |
s g 0000 bgy I
g 6 gz ||
@ A
8 R]
o 2+ 4
o
; | | | | |
o 50 100 150 200 250
Time [s]
. SR-UKF(2) Gyro Bias RMS Error
(2]
B N
s 0.02 //—/’ i
L T
g P
X 001 - .
2 ,/
o /
g 0 i'\w&/“ | S t f —|
o 50 100 150 200 250
Time [s]

Figure 35. SR-UKF gyro bias estimates for experiment 2.

The gyro bias error for SR-UKF(1) is slowly decreasing throughout the data set,
but remains an order of magnitude off which explains the constant offset seen in the pitch
and roll estimates. The bias errors for SR-UKF(2) are two orders of magnitude off in the
roll and yaw rate channels and growing which explains why the roll estimate constantly
diverged. The pitch rate channel bias error of SR-UKF(2) remains at a low value on the
same order of magnitude as the actual bias which explains why it was able to track pitch

nearly as well as the other estimators.

The average RMS error for pitch, roll, and yaw for both experiments is
summarized in Figure 36. The EKF(1), UKF(1), SSUKF(1), and SR-SSUKF(1)
estimators were the most robust, gaining the least amount of error from arbitrary bias

initialization.

85

Root Mean Squared Attitude Errors, Known vs. Unknown Initial Bias

I R b, = [b]
R b, =10
[|Pitch, by = [b]
" |Pitch, by=1[0] |
- Yaw, by = [b] ||

SR-SSUKF(2)

SR-SSUKF(1)

= SSUKF(2)]

B b= 0

,% SSUKF(1) A]

> |

@ 1

() |

S SR-UKF(Q2) —————

o T

o |

> 1

- SR-UKF(1) ‘

g 1

in |

= UKF(2)| ——

E 1 1

© | |

X | |
UKFl)m——-------"-- i Hommmoooo oo
EKF(1) ‘ e

|

1
0.5 1 1.5
RMS Error [deg]

Figure 36. Summary of averaged RMS error for attitude estimation for both
experiments.

The EKF(1), while robust in comparison, had the highest RMS values for pitch
and yaw, and second highest for roll when the bias was well known. The SR-SSUKF(1)
had the best overall performance claiming the lowest RMS error for pitch, roll, and yaw
when the bias was unknown, and second lowest when the bias values were known at

initialization.

86

E. POSITION AND VELOCITY PERFORMANCE

For Condor simulation the INS process model equations were simplified by
assuming a local tangent plane frame of reference and no sidereal rate, which created a
more linear process. The measurement model shared by all the estimators assumes the
GPS position and velocity measurements are corrupted with Gaussian white noise, but no
other errors, which in the case of the Condor simulation environment is true. The RMS

velocity errors from the known and unknown bias experiments are shown in Figure 37.

Root Mean Squared Velocity Errors, Known vs. Unknown Initial Bias

SR-SSUKF(2)|

S —

) |

© s B .
(] | |

z | | | | : : : :

|5 SSIKFQ o A T b SR
e s s e e ey B R

(O]

5 SSUKF(1)| IR I
8 ‘ ‘ ‘ ‘ | | | |

() | |

S SR-UKF(2) ; ; .
() | | | | |

2 V., b =[b]
£ SR-UKF()| — V. |
: ——— N NS
= UKFQ) e~ Ve b=l
© | | | | : _

E UKF(1) e I I Ve b= [0
X T

EKF(1)| I

0 0.02 004 006 008 01 012 0.14 0.16 0.18
RMS Error [m/sz]

Figure 37. RMS velocity estimate errors.

Overall, the RMS values for each filter are near identical which is to be expected
for the relatively clean aiding GPS measurements. The unknown bias case for SR-
UKF(2) is the worst performing estimator which can be explained by both the poor
attitude estimates the INS module received and the relatively large accelerometer bias

errors shown in Figure 38.
87

o SR-UKF(1) Accelerometer Bias RMS Error
L 0.2 ‘ ‘ T
£ »
© 015 -
u //ﬁ Pay
= o1 bz 1
(9]
S 0.05 -
m
g = e
< 0 50 100 150 200 250 300
Time [s]
o SR-UKF(2) Accelerometer Bias RMS Error
2 02 T T T
E
S 0.15- 1
w
2 o1l]
4
]
8 0.05 B
m
S 9 ,
< 0 50 100 150 200 250 300
Time [s]

Figure 38. Accelerometer RMS bias errors for SR-UKF(2)
with arbitrary initial bias values.

Despite the relatively similar accuracy in velocity estimation there is a larger
difference in position estimation shown in Figure 39. The position estimates are purely a
function of the current velocity and aiding sensor measurement. The aircraft in Condor
simulation soars at near 30 m/s, so small errors in velocity can quickly cause the position

estimate errors to grow.

88

Root Mean Squared Position Errors, Known vs. Unknown Initial Bias

. © = [b]
[%y g = [0]
Y=

SR-SSUKF(2)

SR-SSUKF(1)

SR-UKF(2)

SR-UKF(1)

Kalman Filter Type (Measurement Model)

Figure 39. RMS position estimate errors.

None of the position estimate errors grew out of control which was largely a
function of proper filter tuning. The lack of accurate bias and attitude estimation in the
case of the SR-UKF had little effect on position quality as the estimator was able to

overcome the error by relying more heavily on the GPS measurement.

F. ESTIMATOR RANKING AND SELECTION

To determine the best estimation filter for this navigation system design, each
estimator was ranked based on a one-to-nine scale base on the average RMS error
(Figures 36, 37, and 39) and the relative computation times (Figures 25 and 26). Figure
40 is a radar plot of the estimator rankings in each major category: accuracy, robustness,
and efficiency.

89

Robustness

9

Efficiency

Estimator Comparison

EFK(1)
UFK(1)
UKF(2)
SR-UKF(1)
SR-UKF(2)
SSUKF(1)
SSUKF(2)
SR-SSUKF(1)
SR-SSUKF(2)

Accuracy

Figure 40. Radar plot of filter evaluation criteria, score on a scale of one to nine,

The first experiment, where the gyro and accelerometer bias was initialized with
the true values, represents an evaluation of accuracy and takes into account attitude,
position and velocity RMS values. An evaluation of robustness is determined based on
the average RMS values from the second experiment where bias values where initialized
to zero and also takes into account attitude, position, and velocity errors. The efficiency

where nine is the best score.

90

category takes into account the relative speed of each UKF in comparison to the EKF

runtime.

In general, the SR-UKF variants were the most accurate, followed by the standard
UKF and SSUKF variants, respectively, while the EKF ranked last. Moreover, filters
based on MM1 were typically more accurate than those based on MM2. Surprisingly, the
SR-SSUKEF did not follow the same trend. This filter appeared to be especially sensitive
to the choice of measurement model, as SR-SSUKF(1) was the most accurate filter of all,
while SR-SSUKF(2) was the least accurate UKF variant. The EKF last place ranking was
expected since it relies on the linearization of the highly nonlinear measurement

equations of the AHRS module.

A compelling result from these experiments is that the SR-SSUKF(1) was both
the most accurate and most robust filter tested. In general the estimators utilizing AHRS
MM out performed the MM2 variants. SR-UKF(2) was the least robust as the errors for
attitude diverged for the duration of the data set in experiment two. The EKF, while near
the bottom of the pack fared well in that the RMS errors saw little change with arbitrary
bias initialization, but the relative estimation accuracy was limited by the high variation

in each estimate.

With respect to efficiency, the EKF surpasses all the UKF variants. As previously
discussed, the UKF is dominated by the number of iterations per time step leading to the
high ranking of the spherical simplex variants and the low ranking of the normal
weighted UKF.

Direct comparison is an important consideration when evaluating the qualities of
each filter variant. For the SEAFOX |1 application however, it is more important that the
candidate estimator perform well in specific categories. Table 10 lists the subjective
design weights which were used as multipliers against the relative ranking of each filter.

91

Ranking Weights

Parameter Accuracy Experiment Robustness Experiment
Weights Weights
Roll 9 10
Pitch 9 10
Yaw 3 4
XN 5 6
Ye 5 6
Vn 4 5
Ve 4 5)
Time 10 10
Table 10. Subjective weights assigned to each evaluated estimation category.

The weights scale from 1-10, where ten is the most critical and 1 is the least
critical. The COMNAYV GPS system onboard SEAFOX Il provides accurate position,
speed, and heading estimates at a frequency of 20 Hz, which exceeds the needs of the

ATLAS Sonar. What is not provided is accurate pitch and roll estimates, which are

critical parameters for sonar correlation accuracy. Lastly, the PC-104 installed on

SEAFOX 11 will be running multiple programs for various systems; therefore the

efficiency of the estimator is very important. The results for the weighted comparison are

shown in Figure 41.

92

Weighted Estimator Comparison

Robustness

Efficiency

—EFK(1)
— URK(1)
—— UKF()
SR-UKF(1)
SRUKF(2)
SSUKF(1)
SSUKF(2)
—— SR-SSUKF(1)
—— SR-SSUKF(2)

Accuracy

Figure 41. Weighted estimator comparison.

The results for accuracy are slightly shuffled to highlight the filters with the best
attitude estimation. These results compare directly with the RMS error plot previous
shown in Figure 36 where the MM2 variants of each estimator slightly outperform their
model one counterparts with the exception of the SR-SSUKF(1) which outperforms them
all. The results for robustness saw no change as the most robust filters provided the best

attitude estimates. The efficiency category also saw not change as the category was

93

simply scaled by the weighting factor. Lastly, the weighting ranking of each category was
summed for each filter to provide an overall score where the lowest score is the best
performing filter within the weighting scheme from Table 10. The results for total score

are shown in Figure 42.

Weighted Estimator Score

SR-SSUKF(1) [N - 77777777
ssUKF(L) []
ukr(1) [,
ssskr) T
UKF(2)]
sR-ssUKF(2) [
SR-UKF(2)

SR-UKF(1)

Kalman Filter Type (Measurement Model)

EKF(1)

0 100 200 300 400 500 600
Weighted Score

Figure 42. Weighted estimator score based on RMS errors and design weights. Lowest
score is best performing filter.

Despite the top spot for computational efficiency, the EKF was near the bottom of
the pack for the accuracy and robustness category. In this navigation estimator design, the
EKF performed well for velocity and position estimation, but those performance
categories were discounted in comparison to the need for robust and accurate attitude
estimation. With the best weighted and un-weighted accuracy and robustness as well as
efficient computational complexity, the SR-SSUKF(1) is clearly the best choice for
implementation onboard the SEAFOX 1I.

94

G. SEAFOX Il ESTIMATION COMPARISON

For this last experiment, data was collected from sea trial maneuvers on the
Monterey Bay. The portion of data used to compare the EKF(1) and SR-SSUKF(1) was
captured during zig-zag and turning circle maneuvers which provided relatively large
acceleration in the turns. Figure 43 compares position estimates and highlights the

portion of the data where the SEAFOX Il was executing constant rudder turning circles.

SEAFOX II: Position Estimate Comparision During Turning Circle Maneuver
660 ‘ ‘

GPS
SR-SSUKF(1) ||
EKF(1)

650 -

640 -

630 -

620 -

610 -

600 -

XN Position [m]

590 -

580 -

570

560 |-

550

| .
-100 -80 -60 -40 -20 0 20
YE Position [m]

Figure 43. EKF(1) and SR-SSUKF(1) position estimate comparison
during turning circle maneuvers.

On the day on which this particular data set was obtained, the primary GPS
receiver was down for maintenance and the secondary receiver provided the position,
speed, and course over ground. This particular receiver updates at 5 Hz, compared to
the normal 20 Hz output by the primary receiver. Both EKF(1) and SR-SSUKF(1) were

95

able to maintain accurate position estimates. The SR-SSUKF(1) was able to track
slightly closer to the GPS measurement. North and east velocity components are shown

in Figure 44.
SEAFOXII: North Velocity Component Comparison
)
E
2
'O
o
S
Vel GPS
4 \ \ \ \ \ \ | Vel SR-SSUKF(1)
290 300 310 320 330 340 350 360 Vel EKF(1)
Time [s]
SEAFOXII: East Velocity Component Comparison
@
E
2
‘©
o
()
>
_4 1 1 1 1 1 1 1 1 1
290 300 310 320 330 340 350 360 370 380 390
Time [s]

Figure 44. EKF(1) and SR-SSUKF(1) velocity estimate comparison during turning
circle maneuvers.

The EKF(1) in Figure 44 tracks closer to the GPS velocity measurement than the
SR-SSUKF(1), but this is mainly due to the tuning of the SR-SSUKF(1) measurement
noise matrix. By forcing the SR-SSUKF(1) to more closely mimic the GPS velocity
measurement, the position estimate degraded. Slightly increasing the velocity channel
measurement noise gains actually increased the position estimation accuracy of the SR-

SSUFK(1) without introducing excess variation.

96

Attitude estimation for SEAFOX Il is the most critical component of this
particular navigation system design as its sensors do not directly measure roll angles. The
comparison plots in Figures 45 and 46 show the pitch and roll estimates of the SEAFOX
Il during the turning circle maneuver. Both estimators are compared against the unfiltered
gyro only solution of pitch and roll. For the short duration under consideration, the
SEAFOX Il military grade ring laser gyro provides a highly accuracy approximation of

pitch and roll values.

SEAFOXII: Roll Angle Comparision
25 T T T T T

15+ f

10 \]

Roll Angle [deqg]
(6]
==
%gi

O L
5+ 4
10+ ‘ ‘ i
SR-SSUKF(1)
151 EKF(1) N

Unfiltered Gyro
[

_20 | | | | | | | |
290 300 310 320 330 340 350 360 370 380 390
Time [s]

Figure 45. EKF(1) and SR-SSUKF(1) roll estimates compared against unfiltered gyro
integration.

97

SEAFOX II: Pitch Angle Comparision
25 T T T T T
20+ e
15+ Lv) i
= 10+ .
@ ‘h
=’
$ sl |
&
S f
e
a O
5L
10 SR-SSUKF(1)
i EKF(1) 1
Unfiltered Gyro
_15 | | | | | | | |]
290 300 310 320 330 340 350 360 370 380 390
Time [s]

Figure 46. EKF(1) and SR-SSUFK(1) pitch estimates compared against an unfiltered
gyro solution.

The large values of roll and pitch may at first seem excessive for a boat operating
near shore, but there were significant surface wave and swell action on the day this
particular data set was gathered. The EKF(1) and SR-SSUKF(1) produced near identical
results for pitch and roll estimation. Both filters appear to slightly overestimate the roll
values near the peaks in Figure 45, but provide good estimates of pitch in comparison the

to the unfiltered gyro solution.

From these plots it is apparent that there is little difference in the overall accuracy
between the EKF(1) and SR-SSUKF(1) when considering low speed turning maneuvers
on the water. The EKF in general is a tried and true filter that was expected to perform
well for this navigation estimation task. By using the local tangent plane frame of
reference, the navigation equations were simplified resulting in a more linear process
model. The two measurement models tested were both nonlinear, but the second model

98

which estimated the accelerometer measurements was too nonlinear for the EKF,
resulting in filter divergence. The unscented Kalman filters, on the other hand, are
designed to address the problem of nonlinear estimation by propagating an iterative set of
points through the nonlinear process to approximate the true probability distribution and
recover its mean and covariance. This process, while accurate, comes at a high
computational cost and may be too high for some systems. In an effort to reduce the
computational burden associated with the UKF process, the navigation estimator was
split into two modules, reducing the number of states per estimator and therefore
reducing the number of iterations required by the UKF. For the navigation estimator
designed here, the benefits of the EKF are accuracy and robustness on par with the
unscented Kalman filters, but with less computational burden. Detracting from the EKF is
the requirement to compute large Jacobian matrices of partial derivatives, a potentially
large source of error during software implementation as the manual coding of these
equations is extensive. The SR-SSUKF operates at a low computational cost in
comparison to other UKF variants, but still requires nearly double the computation time
of the EKF. Perhaps more importantly, the SR-SSUKF provides equal or better accuracy
than the EKF with more robustness, but does not require coding or computing a single

derivative matrix, making it easier to implement in software than the EKF.

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

VIIl. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

The SEAFOX II’s proprietary architecture initially limited its ability to perform
experimental, fully autonomous operation, thereby relegating its utilization a chase and
recover boat for other autonomous systems. In order to build autonomous capabilities
into the SEAFOX Il and better support the installation of the bow mounted ATLAS
sonar, the proprietary remote control systems onboard were replaced with an open
architecture network of sensors, controllers, and computers. While the SEAFOX 1l was
capable of producing the standard maritime navigation aids of heading, speed, and
position, it did not have an ability to produce accurate pitch and roll estimates the
ATLAS sonar requires to produce accurate sonar maps. To meet this need, the extended
Kalman filter and four variants of the unscented Kalman filter were tested in a high
fidelity simulation environment to determine the navigation estimator with the best
combination of accuracy, robustness, and computational efficiency. In an effort to reduce
computational complexity given that the SEAFOX Il has limited computing resources,
the navigation estimator was separated into two modules, one estimating vessel attitude
(AHRS) and the other estimating position and velocity (INS). Two complex nonlinear
measurement models were investigated to compliment the attitude estimator. The first
measurement model provided instantaneous estimates of pitch and roll by combining
measurements from the accelerometer, gyro, and acceleration estimates based on
measured GPS velocity. The second measurement model recreated accelerometer
measurements by fusing the AHRS and INS state estimates with estimated GPS
accelerations. Both models provided accurate attitude estimation, but the second model
proved too nonlinear for the extended Kalman filter to converge. After extensive
simulation and testing the square root spherical simplex unscented Kalman filter (SR-
SSUKF) combined with the AHRS measurement model that approximated pitch and roll
measurements exhibited the best combination of accuracy, robustness, and efficiency.

101

The SR-SSUKF estimator was then compared against the EKF for evaluation of
SEAFOX Il data. While the SR-SSUKF significantly outperformed the EKF in the
simulation environment, the two estimators provided near identical estimation results

when evaluating actual sea trial data.

In conclusion, for the problem of navigation state estimation on a slow moving
small boat operating in local waters, the extended Kalman filter provides adequate
attitude, position, and velocity estimates with relatively low computational overhead. In
simulation with highly dynamic maneuvers, the EKF consistently underperformed in
comparison to nearly all the unscented Kalman Filters for accuracy and robustness. The
SR-SSUKEF on the other hand proved to be a powerful tool that provided equal to or
better accuracy than the EKF in both low and high dynamic maneuvers at a relatively low
computational cost with the added benefit of software implementation simplicity. The
SR-SSUKEF is highly recommended for use onboard the SEAFOX II.

B. RECOMMENDATIONS FOR FUTURE WORK

The Kalman filter estimators provided good navigation state estimates over short
time periods, but were not tested over long periods of time. It is recommended that each
estimator be tested over longer durations to insure that the bias estimates do not diverge,
causing the entire states estimate to diverge. While both the EKF and SR-SSUKF tested
actual SEAFOX Il data, neither estimator had been implemented onboard SEAFOX II’s

PC-104 hardware for real-time at-sea evaluation.

The ATLAS sonar will provide a unique opportunity to combine path generation
and path following algorithms with live sonar data for submerged obstacle avoidance,
target detection, and target following. The REMUS 100 AUV could be used as a target
for the SEAFOX 11 to track and follow. This would be a difficult navigation task as the
ATLAS sonar has a limited field of view and range, meaning the SEAFOX Il would need
to navigate efficiently to keep the REMUS within the limits of the ATLAS sonar’s

detection region.

102

The UKF proved itself an accurate state estimator, but it can also be modified for
use in parameter estimation. The SEAFOX Il is effectively a black box in terms of
steering and speed model system identification. Producing an accurate model of the
SEAFOX II’s steering and speed dynamics would prove invaluable in the creation of
advance rudder and throttle controllers. Along the same lines, adaptive controllers could
be developed that forego the need for any system identification modeling. This would be
especially useful as the SEAFOX 1l often operates in rough coastal waters where the

large wave action is difficult to remove from rudder and engine feedback controllers.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

APPENDIX: MATLAB CODE

A. OVERVIEW

Contained in the subsequent sections is the code used to evaluate each Kalman
filter in this thesis. The MATLAB code is designed as a function and intended for use in
Simulink in discrete time with fixed intevals of 100 Hz. The code was set up to enable
either Condor data filtering or SEAFOX Il filtering which changes certain assumptions
about the LTP frame, specifically the inclusion of the sidereal rate in the SEAFOX II
implementations. To toggle between data types, the last function input (u) must be
toggled a 1 for Condor data or a 2 for SEAFOX Il data. The code was implemented in
Simulink via an Interpolated MATLAB function block.

B. EXTENDED KALMAN FILTER MATLAB CODE

1. Measurement Model One Implementation

function X _HAT = EKF1(u)

%% Extended Kalman Filter for Navigation State Estimation
% Measurement Model 1

% LT Steven Terjesen

% September 2014

% This estimator is built for use In MATLAB Simulink. There are 38
inputs

% required and can be run in Simulink with an “Interpolated MATLAB

% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through
34

% are the Process Noise and Measurement Noise diagonal elements. These
% elements are not hard coded to allow for easier tuning. Inputs 35

% through 37 are the N-E-D accelerations in the LTP frame. Input 38 is
a

% toggle for selecting whether the data is from Condor or SEAFOX I1.

%% System Inputs
% Measurement inputs

CoG = u(1); %GPS Course Over Ground
speed = u(2); %GPS Speed Over Ground
x = u@3); fy = u@@); fz = u(b); %IMU Accelerations
p=u®); q=u@); r =u(8); %IMU Angular Rates

105

N_sat = u(9); E _sat = u(10); D_sat = u(ll);
heading = u(12);
Vd_sat = u(13);

% Process and Measurement Noise Matrices
R = diag(u(14:16));
R2 = diag(u(17:22));

Qv_C = diag(u(23:25));
Condor
Qv_S = diag(u(23:28));
SEAFOX
Qv2 _C = diag(u(29:31));
Condor
Qv2_S = diag(u(29:34));
SEAFOX

% GPS Accelerations

ax_gps = u(35); ay gps = u(36); az_gps = u(37);

SIM = u(38);
%% Initialization

%GPS Position (NED)
%GPS Heading

%GPS LTP Down Velocity
% (Only used in Condor
% Simulation)

%AHRS Measurement Noise
%INS Measurement Noise

%AHRS Process Noise
%AHRS Process Noise
%INS Process Noise

%INS Process Noise

%GPS Accelerations as
% calculated from 3rd
% Order Filter

%Condor (1) SEAFOX(2)

persistent x _hat x _hat2 P P2 g dt ii jj H1 H2 H3 H4 HeadingO psiO ...

nl n2 wei latO0 kk

% Allows time for Condor To steady out during live testing

if isempty(kk)
kk = 0;
end
if kk < 1 && SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_hat)
% Miscellaneous

dt = 0.01;
g = 9.8;
[m/s"2]
nl =7;
n2 = 9;

weil = 7.292115*10"-5;

%Filter dt [sec]
%Gravity Constant

%Number of AHRS States
%Number of INS States
%Sidereal Rate rad/s

latO= 0.639268394832413; %lon0 = -2.115435878466264 [rad]

% AHRS Initialization
% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);
ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-9;

theta_0 = atan((-rx*rz - Fx*sqrt(rx"2+rz"2-tx"2)) / (fx"2-rz"2));

r_theta = rx*sin(theta_0) + rz*cos(theta 0);

fc = fy-speed*r;
106

phi_0 = atan((r_theta*ry + fc*sqrt(ry”"2+r_theta™2-fc"2)) / (fcn2-
r_thetan2));

psi_O=heading;

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

bg_0 = [0; O; 0];

% State Vector

x_hat = [g_0; bg_0];

% Initial Covariance Estimate

P = diag([le-5*ones(1,4) le-3*ones(1,3)]);

%INS Initialization
% Position & Velocity Initialization

X_0 = N_sat;

y 0 = E_sat;

z 0 = D_sat;

vn_0 = speed*cos(CoG);
ve 0 = speed*sin(CoG);
vd 0 = Vd_sat;

% Accelerometer Initial Bias Estimate

ba 0 = [0; 0; 0];

% State Vector

X_hat2 = [x 0; y 0; z 0; vn_O; ve 0; vd 0; ba 0];

% Initial Covariance Estimate

P2 = diag([1le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);
end

%% AHRS ESTIMATOR

% Measurement Process Jacobian
HH1 = AHRS H(x_hat);

% Kalman Gain Calculation
K1 = P*HH1”/(HH1*P*HH1”> + R);

% Measurement Processing
rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-g0;
% Theta

theta = atan((-rx*rz - fx*sqrt(rx"2+rz"2-tx"2)) / (x"2-rz"2));
r_theta = rx*sin(theta) + rz*cos(theta);
% Added Coriolis Term
fc = fy-(norm(x_hat2(4:6)))*r;
% Phi
phi = atan((r_theta*ry + fc*sqrt(ry"2+r_theta™2-fc"2)) / (fc"2-
r_thetan2));
% Heading (Remove [0 2pi] restriction)
ifT isempty(Hl)
H1 = heading;
H2 = 0;
Heading0 = H1;

107

H2 = heading;
if (H2-H1) <= -100*pi/180
il = ii+l;
end
if (H2-H1) >= 100*pi/180
= ii-1;
end
Heading = HeadingO+((H2+2*pi*ii) - HeadingO);
H1 = H2;
end
% Measurement Vector
Z = [phi; theta; Heading];

% Measurement Estimate
[phi_hat, theta hat, psi_hat] = g2e(x_hat);
% Heading (Remove [0 2pi] restriction)
it isempty(H3)
H3 = psi_hat;

H4 = 0;

psiO = H3;

psi = H3;

13=0;

else

H4 = psi_hat;

if (H4-H3) <= -100*pi/180
ITIENTEE

end

if (H4-H3) >= 100*pi/180
ii = ii-1;

end

psi = psiO+((H4+2*pi*jj) - psi0);

H3 = H4;

end
% Measurment Estimate Vecotr
Z hat = [phi_hat; theta hat; psi];

% Measurement Update

X_hat = x_hat + K1*(Z-Z _hat);
% Normalize Quaternions

Q = x_hat(1:4);

Qn = Q/sqre(Q”*Q);

x_hat = [Qn; x_hat(5:7)];

% AHRS State Output at time Kk
X_AHRS = x_hat;

% Covariance Update
P = (eye(nl,n1)-K1*HH1)*P;

% Time Projection
if SIM ==

108

AHRS F_condor(x_hat,p,q,r);
AHRS G _condor(x_hat);
v = Qv_C;

else
AHRS_F_SEAFOX(x_hat,p,q,r,wei,lat0);
AHRS G_SEAFOX(x_hat);

v = Qv_S;

OOT OO

end

% Discretization of F and G
OMEGA = [-F G*Qv*G”;
zeros(nl,nl) F’];
GAMMA = expm(OMEGA*dt);
PHI = transpose(GAMMA((n1+1:2*nl),(nl+1):2*nl));
Qd = PHI*GAMMA((1:n1),(n1+1):2*nl);

% Covariance Time Projection
P = PHI*P*PHI* + Qd;

% State Time Projection
w_bi = [p; g; r]-x_hat(5:7);
if SIM ==
w_bt = w_bi;
else
R_t2b = rot_t2b(x_hat);
w_bt = w_bi - R _t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

wl = w bt(1l); w2 = w_bt(2); w3 = w_bt(3);
Q _kpl = x_hat(1:4) + (dt/2)*[0 -wl -w2 -w3;
wl O w3 -w2;
w2 -w3 0 wl;
w3 w2 -wl O]*x_hat(1:4);
% Normalize the Quaternion
Q kpl n = Q kpl/sgrt(Q_kpl~*Q_kpl);
x_hat = [Q_kpl_n; x_hat(5:7)];

%% INS ESTIMATOR

% Measurement Process Jacobian
HH2 = [1, 0, O, O, O, O, O, O, O;

0,1, 0, 0, 0, 0, 0, O, O;
0, 0, 1,0, 0, 0,0, 0, O;
0, 0, 0,1, 0, 0, 0, 0, O;
0, 0, 0, 0, 1, 0, 0, 0, O;
0, 0, 0, 0, 0, 1, 0, 0, 0O];

% Kalman Gain Calculation
K2 = P2*HH2”/(HH2*P2*HH2”+R2);

% Measurement
Z2 = [N_sat; E_sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

% Measurement Estimate

109

Z2_hat = x_hat2(1:6);

% Measurement State Update
X_hat2 = x_hat2 + K2*(Z2-Z2_hat);
X_INS = x_hat2;

% Covariance Update
P2 = (eye(n2,n2)-K2*HH2)*P2;

if SIM ==
F2 = INS_F_condor(X_AHRS);
G2 = INS_G_condor(X_AHRS);
Qv2 = Qv2_C;
else
F2 = INS_F_SEAFOX(X_AHRS, wei, latO);
G2 = INS_G_SEAFOX(X_AHRS);
Qv2 = Qv2_S;
end

% Discretization of F and G
OMEGA2 = [-F2 G2*Qv2*G2~;
zeros(n2,n2) F277];
GAMMA2 = expm(OMEGA2*dt);
PHI2 = transpose(GAMMA2((n2+1:2*n2),(n2+1):2*n2));
Qd2 = PHI2*GAMMA2((1:n2),(n2+1):2*n2);

% Covariance Time Projection
P2 = PHI2*P2*PHI2” + Qd2;

% State Time Projection

R_t2b = rot_t2b(X_AHRS);

R_b2t = R_t2b”;

P_kpl = x_hat2(1:3) + [x_hat2(4:5); -x_hat2(6)]*dt;

V_kpl = x_hat2(4:6) + (R_b2t*([fx; fy; fz] - x hat2(7:9)) + [O;
gl)>dt;

X_hat2 = [P_kpl; V_kpl; x hat2(7:9)];
X_HAT = [X_AHRS(1:4); X_INS(1:6); X_AHRS(5:7); X_INS(7:9)];

end
kk = kk+1;

function R_t2b = rot_t2b(x)

q0 = x(1); ql = x(2); 92 = x(3); 93 = x(4);

R_t2b = [q0O™N2+qln™2-g272-g37°2 2*(ql*q2+q0*g3) 2*(ql*q3-q0*g2);
2*(q2*ql-q0*q3) q0"2-qlnN2+g272-g3°2 2*(g2*q3+q0*ql);
2*(g3*q1l+q0*g2) 2*(g3*q2-q0*gl) gO™2-ql~2-q272+q3"2];

end

function G = INS_G_condor(x)
0 = x(1); ql = x(2); 92 = x(3); 93 = x(4);

110

G = [0, O, O;

0, 0, O;

0, 0, O;

- q0"2 - g1™2 + g2”2 + 32, 2*q0*g3 - 2*gql*g2, - 2*q0*g2 -
2*gq1*q3;

- 2*q0*q3 - 2*ql*g2, - q0™2 + 1”2 - q2°2 + 372, 2*q0*ql -
2*q2*q3;

2*q0*q2 - 2*ql*q3, - 2*q0*ql - 2*gq2*q3, - q0™2 + ql™2 + 272 -
q372;

0, 0, O;

0, 0, O;

0, 0, O];
end

function G = INS_G_SEAFOX(X)

G = [0, O, O, O, O, O;
o, 0, 0, 0, 0, O;
o, 0, 0, 0, 0, O;
-q0™2 - gi1n2 + g2°2 + 372, 2*q0*g3 - 2*ql*g2, - 2*q0*q2 - ...
2*ql*g3, 0, 0, O;
-2*q0*q3 - 2*gl*q2, - qO0™2 + ql™2 - g2”2 + 3”2, 2*q0*ql - ...
2*g2*q3, 0, 0, O;
2*q0*q2 - 2*gql*g3, - 2*g0*ql - 2*q2*q3, - q0O™2 + q1™2 + 2”2 - ...
q3~2, 0, 0, O;
0, 0, 0, 1, 0, O;
0, 0, 0, 0, 1, O;
o0, 0, 0, 0, 0, 1];
end
function F = INS_F _condor(x)
= X(l) ql = x(2); 92 = x(3); 93 = x(4);
= [0, O, O, 1, O, O, O, O, O;
o, o, 0, 0, 1, 0, 0, O, O;
o, o, o, o, 0, -1, 0, 0, O;
o0, 0, 0, 0, 0, 0, - gO™2 - g1™2 + g2”2 + 372, 2*q0*g3 - 2*ql*g2,
- 2*q0*q2 - 2*ql*g3;
o, o, 0, 0, 0, 0, - 2*g0*g3 - 2*ql*g2, - gqO™2 + g1™2 - ...
q27°2 + g37°2, 2*q0*ql - 2*q2*Qg3;
o, 0, 0, 0, 0, 0, 2*q0*g2 - 2*ql*q3, ---
- 2*g0*ql - 2*q2*q3, - q0™2 + ql™2 + 272 - g3"2;
o, o, 0, 0, 0, 0, 0, 0, O;
o, o, o, 0, 0, 0, 0, 0, O;
o, 0, 0, 0, 0, 0, 0, O, O];
end
function F = INS_F SEAFOX(x, wei, lat0)
= x(1); gl = x(2); 92 = x(3); 93 = x(4)
= [0, O, O, 1, O, O, O, O, O;
o, o, 0, 0, 1, 0, 0, O, O;
o, o, o, o, 0, -1, 0, 0, O;

x(1); gl = x(2); d2 = x(3); g3 = x(4);

111

o0, 0, 0, 0, -2*wei*sin(lat0), 0, - q0O™2 - ql™2 + g272 + 3”2,
2*q0*g3 - 2*ql*q2,- 2*g0*g2 - 2*ql*q3;
0, 0, 0, 2*wei*sin(lat0), 0, 2*wei*cos(lat0), - 2*q0*q3 - 2*gl*qg2,

- 0”2 + q1™2 - g272 + 9372, 2*g0*gl - 2*q2*qg3;

o0, 0, 0, 0, -2*wei*cos(lat0), 0, 2*q0*g2 - 2*ql*q3, - 2*q0*ql ...
- 2*g2*q3, - 0”2 + gl1™2 + g2°2 - g3°2;

o, o, 0, 0, 0, 0, 0, 0, O;

o, o, 0, 0, 0, 0, 0, 0, O;

o, 0, 0, 0, 0, 0, 0, O, O];

end

function G = AHRS_G_SEAFOX(X)
q0 = x(1); gl = x(2); 92 = x(3); 93 = x(4);

G=[9g1/2, q2/2, q3/2,
-q0/2, q3/2, -q2/2,
-q3/2, -q0/2, ql1/2,

qz2/2, -q1/2, -q0/2,
0, 0, 0,
o, o, o,
0, 0, 0,

[cNol NeoloNoNe]
el NeoNeoloNoNe]

RPOOOOOO

end

function G = AHRS_G_condor(x)

q0 = x(1); ql = x(2); g2 = x(3); 93 = x(4);
G=[91/2, q2/2, q3/2;

-q0/2, q3/2, -q2/2;

-q3/2, -q0/2, ql/2;

qz2/2, -q1/2, -q0/2;

0, 0, 0;
0, o, 0;
0, 0, 0];

end

function F = AHRS_F _condor(x, p, g, I)

% Quaternions

g0 = x(1); gl = x(2); 92 = x(3); a3 = x(4);
% Gyro Bias

bgl = x(5); bg2 = x(6); bg3d = x(7);

F = [0, bgl/2 - p/2, bg2/2 - g/2, bg3/2 - r/2, ql/2, q2/2, q3/2;

p/2 - bgl/2, 0, r/2 - bg3/2, bg2/2 - gq/2, -q0/2, q3/2, -
q2/2;
q/2 - bg2/2, bg3/2 - r/2, 0, p/2 - bgl/2, -q3/2, -q0/2,
ql/2;
r/2 - bg3/2, q/2 - bg2/2, bgl/2 - p/2, 0, 92/2, -ql/2, -
q0/2;
0, 0, 0, 0, o, 0,

0;

112

0;

0];
end

function F = AHRS_F_SEAFOX(X, p, g, r, wei, lat0)
% Quaternions

g0 = x(1); g1 = x(2); 92 = x(3); g3 = x(4);

% Gyro Bias

bgl = x(5); bg2 = x(6); bg3 = x(7);

F = [g0*wei*(gl*cos(lat0) - g3*sin(lat0)),

(wei*cos(l1at0)*q0n"2)/2 + (3*wei*cos(lat0)*qlN2)/2 - - ..
wei*sin(lat0)*gql*q3 + (wei*cos(lat0)*q272)/2 + ...
(wei*cos(lat0)*q37"2)/2 + bgl/2 - p/2, ...

bg2/2 - g/2 + ql*g2*wei*cos(lat0) - g2*g3*wei*sin(lat0), ...

bg3/72 - r/2 - (q0"2*wei*sin(lat0))/2 - (ql™"2*wei*sin(lat0))/2 - ...
(g2”"2*wei*sin(lat0))/2 - (3*g3"2*wei*sin(lat0))/2 +
ql*qgq3*wei*cos(lat0),

ql/2, q2/2, q3/2;

p/2 - bgl/2 - (3*q0"2*wei*cos(lat0))/2 - (gl™2*wei*cos(lat0))/2 - ...
(g2"2*wei*cos(lat0))/2 - (g3"2*wei*cos(lat0))/2 - qO0*g2*wei*sin(lat0),

-g1*wei*(g0*cos(lat0) + g2*sin(lat0)), r/2 - bg3/2 - ...
(gon2*wei*sin(lat0))/2 - (ql™2*wei*sin(lat0))/2 - ...
B*g2n2*wei*sin(lat0))/2 - (g3*2*wei*sin(lat0))/2 - ...
qo0*g2*wei*cos(lat0), bg2/2 - gq/2 - qO0*g3*wei*cos(lat0) - ...
g2*q3*wei*sin(lat0), -q0/2, q3/2, -g2/2;

q/2 - bg2/2 + q0*g3*wei*cos(lat0) + gO0*gql*wei*sin(lat0),
(wei*sin(lat0)*q0n"2)/2 + (3*wei*sin(lat0)*ql™2)/2 + ...
wei*cos(lat0)*gql*q3 + (wei*sin(lat0)*q272)/2 + ...
(wei*sin(lat0)*q3™2)/2 + bg3/2 - r/2,

g2*wei*(q3*cos(lat0) + gl*sin(lat0)), ...
(wei*cos(lat0)*q0n"2)/2 + (wei*cos(lat0)*ql1n2)/2 + wei*sin(lat0)*ql*g3 +

(wei*cos(lat0)*q2~2)/2 + (3*wei*cos(lat0)*q3™2)/2 - bgl/2 + ...
p/2, -q3/2, -q0/2, ql/2;

(B*wei*sin(1at0)*q0"2)/2 - wei*cos(lat0)*q0*q2 + ...
(wei*sin(lat0)*q1n2)/2 + (wei*sin(lat0)*q272)/2 + ...
(wei*sin(lat0)*q3"2)/2 - bg3/2 + r/2, g/2 - ...

bg2/72 - gl*g2*wei*cos(lat0) + qO*ql*wei*sin(lat0), ...

bgl/2 - p/2 - (q0"2*wei*cos(lat0))/2 - (ql™2*wei*cos(lat0))/2 - ...
(3*g2"2*wei*cos(lat0))/2 - (g3"2*wei*cos(lat0))/2 + ...
qo0*g2*wei*sin(lat0), -g3*wei*(g2*cos(lat0) - qO0*sin(lat0)),

qz2/2, -ql1/2, -q0/2;

function H = AHRS_H(X)

q0 = x(1); gl = x(2); 92 = x(3); 93 = x(4);

H=T[-(2*(q0"2*ql + 2*q0*g2*q3 + g1™3 + gl*g2”2 - ql1*q3°2))/ ...
113

(((4*(q0*g1 + g2*g3)"2)/(q0"2 - ql1™2 - 272 + q3™"2)"™2 + 1)* ...

(q0™2 - ql7™2 - 272 + q372)N2), (2*(q0"3 + q0*ql”™2 - qO*g2"2 + ...
q0*g3”2 + 2*ql*q2*q3))/(((4*(q0*ql + g2*q3)"2)/(q0"2 - q1"2 - ...
272 + q37°2)72 + 1)*(q0"2 - ql™2 - 272 + q372)72), (2*(q0™2*g3 + ...
2*q0*ql*g2 - ql~2*g3 + g272*q3 + q3°3))/(((4*(q0*ql + g2*qg3)"2)/ ...
(q0™2 - g1n™2 - 272 + g37"2)N2 + 1)*(q0N2 - gl1n2 - g27°2 + q3N2)N2),
-(2*(- q0~2*g2 + 2*q0*ql*q3 + ql72*q2 + 23 + q2*q3°2))/(((4* ...
(q0*ql + g2*q3)"2)/(q0"2 - ql™2 - 272 + q372)"2 + 1)*(q0™2 - ql™2 ...
- g272 + q372)"2), 0, 0, 0;

*q2)/(1 - (2*q0*q2 - 2*ql*q3)"2)"(1/2), -(2*q3)/(1 - (2*q0*q2 - ...
2*q1*q3)"2)"N(1/2), (2*q0)/(1 - (2*q0*q2 - 2*ql1*g3)"2)"(1/2),
-(2*q1)/(1 - (2*q0*g2 - 2*q1*q3)"2)~(1/2), 0, 0, O;

-(2*(q0"2*g3 + 2*q0*ql*q2 - ql~2*q3 + g272*q3 + q3°3))/(((4*(q0*g3 ...
+ ql*q2)72)/(q0"2 + ql™2 - 272 - q372)72 + 1)*(q0™2 + qln2 - 272 ...
- g372)"2), -(2*(- q0"2*q2 + 2*q0*ql*q3 + qln2*q2 + 273 + ...
g2*q3°2))/(((4*(q0*g3 + q1*q2)"2)/(q0”"2 + gin2 - q272 - g3"2)"2 + ...
1*(q0"2 + ql™2 - 272 - g372)"2), (2*(q0"2*ql + 2*q0*g2*q3 + ql~3 +

qL*q272 - ql*q37°2))/(((4*(q0*q3 + ql*q2)"2)/(q0 2 + qlA2 - q2°2 — ...
q37"2)"2 + 1)*(q0"2 + gqlr2 - 22 - q3°2)"2), (2*(q0™3 + q0*q1”2 ...
- q0*g2"2 + q0*g372 + 2*ql*q2*q3))/(((4*(q0*qg3 + q1*q2)"2)/(q0"2 + ...
qlh2 - 272 - g372)"2 + 1)*(q0™2 + qln2 - 22 - q372)"2), 0, 0, 0];
end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R_phi = [1 0 0; O cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
g2=(R_n2b(3,1)-R n2b(1,3))/(4*q0);
q3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [d0; 9l1; d92; q3];
end

function [phi, theta, psi] = g2e(X)
0 = x(1); gl = x(2); 92 = x(3); 93 = x(4);

% Compute Euler Angles

phi = atan2(2*(g2*q3+g0*qgl), (q0"2-g1"2-q2°2+q3°2));

theta = asin(-2*(ql1*q3-q0*qg2));

psi = mod(atan2(2*(ql*q2+q0*qg3), (q0"2+ql"2-q272-q3°2)) ,2*pi);
end

end

2. Measurement Model Two Implementation

function X HAT = EKF2(u)
114

%% Extended Kalman Filter for Navigation State Estimation
% Measurement Model 2

% LT Steven Terjesen

4 September 2014

X

% ** This EKF was unable to converge when running measurement model 2

**

% This estimator is built for use in MATLAB Simulink. There are 39
inputs

% required and can be run in Simulink with an “Interpolated MATLAB

% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through
35

% are the Process Noise and Measurement Noise diagonal elements. These
» elements are not hard coded to allow for easier tuning. Inputs 36

% through 38 are the N-E-D accelerations in the LTP frame. Input 39 is
a

t toggle for selecting whether the data is from Condor or SEAFOX 11.

XX

X

%% System Inputs
% Measurement inputs

CoG = u(1); %GPS Course Over Ground
speed = u(2); %GPS Speed Over Ground
x = u(3); fy = u@); fz = u(b); %IMU Accelerations
p=u(®); q=u(@; r =u(8); %IMU Angular Rates
N_sat = u(9); E_sat = u(10); D_sat = u(1ll); %GPS Position (NED)
heading = u(12); %GPS Heading

Vd_sat = u(13); %GPS LTP Down Velocity

% (Only used in Condor
% Simulation)
% Process and Measurement Noise Matrices

R = diag(u(14:17)); %AHRS Measurement Noise
R2 = diag(u(18:23)); %INS Measurement Noise
Qv_C = diag(u(24:26)); %AHRS Process Noise
Condor

Qv_S = diag(u(24:29)); %AHRS Process Noise
SEAFOX

Qv2_C = diag(u(30:32)); %INS Process Noise
Condor

Qv2_S = diag(u(30:35)); %INS Process Noise
SEAFOX

% GPS Accelerations

ax_gps = u(36); ay_gps = u(37); az_gps = u(38); %UGPS Accelerations as
% calculated from 3rd
% Order Filter

115

SIM = u(39); %Condor (1) SEAFOX(2)

%% Initialization

persistent x_hat x_hat2 P P2 g dt ii jj H1 H2 H3 H4 HeadingO psiO ...
nl n2 wei lat0 kk

% Allows time for Condor To steady out during live testing
it isempty(kk)
kk = 0;
end
if kk < 1 && SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_hat)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s™2]

nl =7; %Number of AHRS States
n2 = 9; %Number of INS States
wei = 7.292115*10"-5; %Sidereal Rate rad/s

latO= 0.639268394832413; %lon0 = -2.115435878466264 [rad]

% AHRS Initialization

% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);

rz = az_gps-gd;

theta 0 = atan((-rx*rz - x*sqrt(rx"2+rz"2-fx"2)) / (fx"2-rz"2));
r_theta = rx*sin(theta _0) + rz*cos(theta 0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”"2+r_theta™2-fc"2)) / (fcn2-
r_thetan2));

psi_O=heading;

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

bg_0 = [0; O; 0];

% State Vector

X_hat = [g_0; bg 0];

% Initial Covariance Estimate

P = diag(Jle-3*ones(1,4) le-3*ones(1,3)]);

%INS Initialization
% Position & Velocity Initialization

X_0 = N_sat;

y 0 = E_sat;

z 0 = D_sat;

vn_0 = speed*cos(CoG);
ve 0 = speed*sin(CoG);
vd_0 = Vd_sat;

% Accelerometer Initial Bias Estimate

ba 0 = [0; 0; 0];

% State Vector

X_hat2 = [x _0; y 0; z 0; vn_O; ve 0; vd 0; ba_0];

116

% Initial Covariance Estimate

P2 = diag([1le-3*ones(1,3), le-3*ones(1,3), le-3*ones(1,3)]);

end

%% AHRS ESTIMATOR

% Measurement Process Jacobian

H = AHRS_H(x_hat, x_hat2, p, g, r, g, ax_gps, ay_gps, az_gps)

X

» Kalman Gain Calculation
K = P*H*’/(H*P*H> + R);

% Measurement Processing
» Heading (Remove [0 2pi] restriction)
it isempty(H1l)
H1 = heading;
H2 = 0;
Heading0 = H1;
Heading = H1;
11=0;
else

XX

2 =
f (H2-H1) <= -100*pi/180
il = ii+l;

if (H2-H1) >= 100*pi/180
iio= 1i-1;

end
Heading = HeadingO+((H2+2*pi*ii) - HeadingO);
H1 = H2;

end

% Measurement Vector
Z = [fx; Fy; fz; Heading];

% Measurement Estimate
[~, ~, psi_hat] = g2e(x_hat);
% Heading (Remove [0 2pi] restriction)
it isempty(H3)

H3 psi_hat;

H4 0;

psiO = H3;

psi = H3;

13=0;
else

H4 = psi_hat;

if (H4-H3) <= -100*pi/180

13 = 1i+1;

end
if (H4-H3) >= 100*pi/180
JJ =11-1;
end
psi = psiO+((H4+2*pi*jj) - psi0);
H3 = H4;
end

117

R_t2b = rot_t2b(x_hat);
w_bi = [p; q; r] - x_hat(5:7);
if SIM ==
w_bt = w_bi;
else
w_bt = w_bi - R _t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

Fb_hat = R_t2b*[ax_gps; ay _gps; az_gps] + cross(w_bt,
R_t2b*x_hat2(4:6)) + x hat2(7:9);

% Measurment Estimate Vecotr
Z hat = [Fb_hat; psi];

% Measurement Update

X_hat = x_hat + K*(Z-Z_hat);
% Normalize Quaternions

Q = x_hat(1:4);

Qn = Q/sqre(Q”*Q);

x_hat = [Qn; x_hat(5:7)];

% AHRS State Output at time Kk
X_AHRS = x_hat;

% Covariance Update
P = (eye(nl,nl)-K*H)*P;

% Time Projection

if SIM ==
F = AHRS_F_condor(x_hat,p,q,r);
G = AHRS _G_condor(x_hat);
Qv = Qv_C;
else
F = AHRS F_SEAFOX(x_hat,p,q,r,wei,lat0);
G = AHRS_G_SEAFOX(x_hat);
Qv = Qv_S;
end

% Discretization of F and G
OMEGA = [-F G*Qv*G”;
zeros(nl,nl) F’];
GAMMA = expm(OMEGA*dt);
PHI = transpose(GAMMA((n1+1:2*nl),(nl+1):2*nl));
Qd = PHI*GAMMA((1:n1),(n1+1):2*nl);

% Covariance Time Projection
P = PHI*P*PHI* + Qd;

% State Time Projection

w_bi = [p; q; r]-x_hat(5:7);
if SIM ==

w_bt = w_bi;

118

else

R_t2b = rot_t2b(x_hat);

w_bt = w_bi - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

wl = w bt(1l); w2 = w_bt(2); w3 = w_bt(3);
Q_kpl = x_hat(1:4) + (dt/2)*[0 -wl -w2 -w3;
wl O w3 -w2;
w2 -w3 0 wl;
w3 w2 -wl O]*x_hat(1:4);
% Normalize the Quaternion
Q_kpl n = Q _kpl/sqrt(Q_kpl’*Q_kpl);
x_hat = [Q_kpl_n; x_hat(5:7)];

%% INS ESTIMATOR

% Measurement Process Jacobian

H=[1, 0, O, O, O, O, O, O, O;
0,1, 0, 0, 0, 0, O, O, O;
o, 0, 1, 0, 0, 0, O, O, O;
6, 0, 0, 1, 0, 0, 0, O, O;
6, 0, 0, 0, 1, 0, 0, O, O;
o, 0, 0, 0, 0, 1, 0, O, OF;

X

s Kalman Gain Calculation
K = P2*H”/(H*P2*H”+R2) ;

% Measurement
Z = [N_sat; E _sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

% Measurement Estimate
Z_hat = x_hat2(1:6);

% Measurement State Update
X_hat2 = x_hat2 + K*(Z-Z_hat);
X_INS = x_hat2;

% Covariance Update
P2 = (eye(n2,n2)-K*H)*P2;

if SIM ==
F = INS_F _condor(X_AHRS);
G = INS_G_condor(X_AHRS);
Qv2 = Qv2_C;
else
F = INS_F_SEAFOX(X_AHRS, wei, lat0O);
G = INS_G_SEAFOX(X_AHRS);
Qv2 = Qv2_S;
end

% Discretization of F and G
OMEGA = [-F G*Qv2*G~”;
zeros(n2,n2) F’];

119

GAMMA = expm(OMEGA*dt);
PHI = transpose(GAMMA((n2+1:2*n2),(n2+1):2*n2));
Qd = PHI*GAMMA((1:n2),(n2+1):2*n2);

% Covariance Time Projection
P2 = PHI*P2*PHI” + Qd;

% State Time Projection

R_t2b = rot_t2b(X_AHRS);

R_b2t = R_t2b”;

P_kpl = x hat2(1:3) + [x_hat2(4:5); -x_hat(6)]*dt;

V_kpl = x_hat2(4:6) + (R_b2t*([fx; fy; fz] - x_hat2(7:9)) + [0; O;
gl)*dt;

X_hat2 = [P_kpl; V_kpl; x hat2(7:9)];

X_HAT = [X_AHRS; X INS];
end
kk = kk+1;

function R_t2b = rot_t2b(x)

q0 = x(1); gl = x(2); 92 = x(3); g3 = x(4);

R_t2b = [q0O™N2+qlnN2-g27°2-g3°2 2*(ql*q2+q0*g3) 2*(ql*q3-q0*g2);
2*(gq2*ql-q0*q3) q0"2-qln2+g272-g3°2 2*(g2*q3+q0*ql);
2*(gq3*ql+q0*qg2) 2*(gq3*q2-q0*ql) q0"2-ql"2-g272+q3°2];

end

function G = INS_G_condor(x)
g0 = x(1); g1 = x(2); 92 = x(3); a3 = x(4);
G = [0, O, O;

0, 0, O;

0, 0, O;

- q0"2 - g1n2 + g2”2 + g3"2, 2*q0*g3 - 2*gql*g2, - 2*q0*q2 -
2*ql*qg3;

- 2*q0*q3 - 2*ql*g2, - q0™2 + 1”2 - 22 + 372, 2*q0*ql -
2*q2*q3;

2*q0*q2 - 2*ql*q3, - 2*q0*ql - 2*gq2*q3, - q0™2 + ql™2 + 272 -
q372;

[eNeoNe)
[eNeoNe)

[eNeoNe)
bd 41w

end

function G = INS_G_SEAFOX(X)
0 = x(1); gl = x(2); g2 = x(3); 93 = x(4);

G=[

120

o0, 0, 0, 1, 0, O;
o, 0, 0, 0, 1, O;
0, 0, 0, 0, 0, 1];

end

function F = INS_F_condor(x)

q0 = x(1); ql = x(2); 92 = x(3); 93 = x(4);

= [0, O, O, 1, O, O, O, O, O;

o0, 0, 0, 0, 1, 0, O, O, O;
o, o, o, o, 0, -1, 0, 0, O;
o0, 0, 0, 0, 0, 0, - gO™2 - g1™2 + g2”2 + 372, 2*q0*g3 - 2*ql*g2,
- 2*q0*g2 - 2*ql*q3;
o, 0o, 0, 0, 0, 0, - 2*g0*g3 - 2*gl*g2, - qO"2 + Q1”2 - ...
q27"2 + g37°2, 2*q0*ql - 2*q2*qg3;
o, 0, 0, 0, 0, 0, 2*q0*g2 - 2*ql*q3, ---
- 2*g0*ql - 2*q2*q3, - q0™2 + ql™2 + 272 - g3"2;
o, o, o, 0o, 0, 0, 0, 0, O;
o, o, o, o, 0, 0, 0, O, O;
o, 0, 0, 0, 0, 0, 0, O, O];

end

function F = INS_F . SEAFOX(x wei, lat0)

g0 = x(1); g1 = x(2); 92 = X(3) a3 = x(4)

= [0, O, O, 1, O, O, 0, o,

o, 0, o, 0, 1, 0, O, O, 0,
o, o, o, o, 0, -1, 0, 0, O;
0, 0, 0, 0, -2*wei*sin(lat0), 0, - q0O™2 - ql™2 + g2”2 + Qq3"2
2*q0*g3 - 2*ql*q2,- 2*g0*g2 - 2*ql*q3;
0, 0, 0, 2*wei*sin(lat0), 0, 2*wei*cos(lat0), - 2*q0*q3
- q0™2 + gq1n2 - g2°2 + g37°2, 2*q0*ql - 2*q2*Qg3;
o0, 0, 0, 0, -2*wei*cos(lat0), 0, 2*q0*g2 - 2*ql*q3, - 2*q0*ql ...
- 2*g2*q3, - q0™2 + gl1™2 + g2°2 - q3°2;
o, 0, 0, 0, 0, O, 0, O, O;
o, 0, 0, 0, 0, 0, O, O, O;
o, 0, 0, 0, 0, 0, 0, O, O];

end

function G = AHRS_G_SEAFOX(X)

-2*q0*q3 - 2*gl*q2, - q0O™2 + ql™2 - g2”2 + 3”2, 2*q0*ql - ...

2*q2*g3, 0, 0, O;

2*q0*q2 - 2*ql*q3, - 2*q0*ql - 2*q2*q3, - 072 + 172 + 272 - ...

q3~2, 0, 0, O;

0 =x(1); gl = x(2); 92 = x(3); 93 = x(4);

= ql/2, q2/2, q3/2,

0
-q0/2, q3/2, -q2/2, 0O
-q3/2, -q0/2, qi1/2, O
qz2/2, -q1/2, -qo/2, O
1
0
0

0, 0, 0,
0, 0, 0,
0, 0, 0,

el NoNeoloNoNe]
RPOOOOOO
bl w1

121

end

function G = AHRS_G_condor(x)

g0 = x(1); gl = x(2); 92 = x(3); a3 = x(4);
G=[91/2, q2/2, q3/2;

-q0/2, q3/2, -q2/2;

-q3/2, -q0/2, ql/2;

qz2/2, -q1/2, -q0/2;

0, 0, 0;
0, o, 0;
0, 0, 0];

end

function F = AHRS_F _condor(x, p, g, I)

% Quaternions

g0 = x(1); g1 = x(2); 92 = x(3); a3 = x(4);
% Gyro Bias

bgl = x(5); bg2 = x(6); bg3 = x(7);

F = [0, bgl/2 - p/2, bg2/2 - q/2, bg3/2 - r/2, ql/2, q2/2, q3/2;

p/2 - bgl/2, 0, r/2 - bg3/2, bg2/2 - gq/2, -q0/2, q3/2, -
q2/2;
q/2 - bg2/2, bg3/2 - r/2, 0, p/2 - bgl/2, -q3/2, -q0/2,
ql/2;
r/2 - bg3/2, g/2 - bg2/2, bgl/2 - p/2, 0, 9272, -ql1/2, -
q0/2;
0, 0, 0, o, o, o,
0;
0, 0, 0, 0, 0, 0,
0;
o, o, o, 0, 0, 0,
0l:
end

function F = AHRS_F_SEAFOX(X, p, g, r, wei, lat0)
% Quaternions

g0 = x(1); gl = x(2); 92 = x(3); a3 = x(4);

% Gyro Bias

bgl = x(5); bg2 = x(6); bg3 = x(7);

F = [g0O*wei*(gl*cos(lat0) - g3*sin(lat0)), ...

(wei*cos(lat0)*q0n"2)/2 + (3*wei*cos(lat0)*ql™N2)/2 - ...
wei*sin(lat0)*gql*q3 + (wei*cos(lat0)*q272)/2 + ...
(wei*cos(lat0)*q37"2)/2 + bgl/2 - p/2, -

bg2/2 - g/2 + ql*g2*wei*cos(lat0) - g2*g3*wei*sin(lat0), ...

bg3/72 - r/2 - (q0"2*wei*sin(lat0))/2 - (ql™M2*wei*sin(lat0))/2 - ...
(@272*wei*sin(lat0))/2 - (3*g3"2*wei*sin(lat0))/2 +
ql*g3*wei*cos(lat0), -

ql/2, q2/2, q3/2;

p/2 - bgl/2 - (3*q0"2*wei*cos(lat0))/2 - (gl™2*wei*cos(lat0))/2 - ...
(g2”2*wei*cos(lat0))/2 - (g3"2*wei*cos(lat0))/2 - qO0*g2*wei*sin(lat0),

122

-gl*wei*(g0*cos(lat0) + g2*sin(lat0)), r/2 - bg3/2 - ...
(gon2*weir*sin(lat0))/2 - (ql™2*wei*sin(lat0))/2 - ...
(B*g2n2*wei*sin(lat0))/2 - (g3"2*wei*sin(lat0))/2 - ...
qo0*g2*wei*cos(lat0), bg2/2 - q/2 - qO0*g3*wei*cos(lat0) - ...
g2*q3*wei*sin(lat0), -q0/2, q3/2, -g2/2;

q/2 - bg2/2 + qO0*g3*wei*cos(lat0) + gO0*ql*wei*sin(lat0),
(wei*sin(lat0)*q0"2)/2 + (3*wei*sin(lat0)*ql™2)/2 + ...
wei*cos(lat0)*gl*q3 + (wei*sin(lat0)*q272)/2 + ...
(wei*sin(lat0)*q3"2)/2 + bg3/2 - r/2, -
g2*wei*(g3*cos(lat0) + gl*sin(lat0)), ...
(wei*cos(lat0)*q0n"2)/2 + (wei*cos(lat0)*ql1n2)/2 + wei*sin(lat0)*ql*g3 +

(wei*cos(lat0)*q272)/2 + (3*wei*cos(lat0)*q3™2)/2 - bgl/2 + ...
p/2, -q3/2, -q0/2, ql/2;

B*wei*sin(1at0)*q0n2)/2 - wei*cos(lat0)*q0*q2 + ...
(wei*sin(lat0)*qln™2)/2 + (wei*sin(lat0)*q272)/2 + ...
(wei*sin(lat0)*q3"2)/2 - bg3/2 + r/2, g/2 - ...

bg2/72 - gl*g2*wei*cos(lat0) + qO*gql*wei*sin(lat0), ...

bgl/2 - p/2 - (q0O"2*wei*cos(lat0))/2 - (ql™2*wei*cos(lat0))/2 - ...
(B*g2n2*wei*cos(lat0))/2 - (g3*2*wei*cos(lat0))/2 + ...
qo*g2*wei*sin(lat0), -g3*wei*(g2*cos(lat0) - qO0*sin(lat0)),

qz2/2, -q1/2, -q0/2;

o, 0o, 0, 0, 0, 0, O;

0, 0, 0, O, ;
0, 0, 0, O,

end

function H = AHRS H(x, x2, p, q, r, g, ax, ay, az)
g0 = x(1); g1 = x(2); 92 = x(3); g3 = x(4);

bgl = x(5); bg2 = x(6); bg3 = x(7);

vn = x2(4); ve = x2(5); vd = x2(6);

H = [(bg3 - r)*(2*gl*vd + 2*q0*ve - 2*q3*vn) - (bg2 - q)*(2*q0*vd - ...
2*gql*ve + 2*g2*vn) + 2*ax*q0 2*ay*q3 - 2*az*g2 - 2*g*g2, --.
(bg2 - g)*(2*gl*vd + 2*qO0*ve 2*q3*vn) + (bg3 - r)*(2*q0*vd - ...
2*ql*ve + 2*g2*vn) + 2*ax*ql 2*ay*g2 + 2*az*q3 + 2*g*q3, ...
(bg3 - r)*(2*g3*vd + 2*g2*ve 2*ql*vn) - (bg2 - g)*(2*q3*ve - ...
2*g2*vd + 2*q0*vn) - 2*ax*qg2 2*ay*ql - 2*az*g0 - 2*g*q0, ...
2*ay*q0 - (bg3 - r)*(2*g3*ve 2*g2*vd + 2*g0*vn) - 2*ax*q3 - ...
(bg2 - g)*(2*g3*vd + 2*g2*ve + 2*ql*vn) + 2*az*ql + 2*g*ql,

0, ve*(2*q0*ql - 2*q2*q3) - vd*(q0™2 - gl™2 - 272 + q3™2) -

vn*(2*q0*g2 + 2*ql*q3), ve*(q0™2 - ql1™2 + 272 - q372) + vd*(2*q0*ql +

2*q2*q3) - vn*(2*q0*g3 - 2*ql*qg2);

(bgl - p)*(2*q0*vd - 2*ql*ve + 2*g2*vn) - (bg3 - r)*(2*q3*ve - ...
2*q2*vd + 2*g0*vn) - 2*ax*q3 + 2*ay*q0 + 2*az*ql + 2*g*ql, --..
2*ax*g2 - (bg3 - r)*(2*g3*vd + 2*g2*ve + 2*ql*vn) - (bgl - ...
p)*(2*ql*vd + 2*g0*ve - 2*g3*vn) - 2*ay*ql + 2*az*q0 + 2*g*qO,
(bgl - p)*(2*q3*ve - 2*qgq2*vd + 2*q0*vn) + (bg3 - r)*(2*q0*vd - ...
2*gql*ve + 2*g2*vn) + 2*ax*ql + 2*ay*gq2 + 2*az*g3 + 2*g*q3, --.
(bgl - p)*(2*g3*vd + 2*g2*ve + 2*ql*vn) - (bg3 - r)*(2*ql*vd + ...
2*gq0*ve - 2*q3*vn) - 2*ax*q0 - 2*ay*g3 + 2*az*q2 + 2*g*q2, -
vd*(q0™2 - 1”2 - 22 + g372) - ve*(2*q0*ql - 2*g2*q3) + ...
vn*(2*q0*gq2 + 2*gl1*g3), 0, vd*(2*q0*g2 - 2*ql*q3) - vn*(q0™2 + ...
qln2 - g272 - g372) - ve*(2*g0*g3 + 2*ql*g2);

(bg2 - g)*(2*g3*ve - 2*g2*vd + 2*q0*vn) - (bgl - p)*(2*gl*vd + ...

123

L+ o+ + 1+

2*q0*ve - 2*q3*vn) + 2*ax*q2 - 2*ay*ql + 2*az*q0 + 2*g*qO0, ...
(bg2 - g)*(2*q3*vd + 2*qgq2*ve + 2*ql*vn) - (bgl - p)*(2*q0*vd - ...
2*gql*ve + 2*g2*vn) + 2*ax*q3 - 2*ay*q0 - 2*az*gql - 2*g*ql, ...
2*ax*q0 - (bg2 - q)*(2*q0*vd - 2*gl*ve + 2*g2*vn) - (bgl - ...
p)*(2*q3*vd + 2*g2*ve + 2*ql*vn) + 2*ay*q3 - 2*az*q2 - 2*g*q2, --.
(bgl - p)*(2*q3*ve - 2*q2*vd + 2*q0*vn) + (bg2 - gq)*(2*ql*vd + ...
2*q0*ve - 2*g3*vn) + 2*ax*ql + 2*ay*g2 + 2*az*g3 + 2*g*q3, ...
vn*(2*q0*q3 - 2*gl*g2) - vd*(2*q0*ql + 2*g2*q3) - ve*(q0™2 - ...
qln2 + g272 - g372), vn*(q0"2 + ql™2 - g2°2 - q3™2) - vd*(2*q0*g2

- 2*ql1*q3) + ve*(2*q0*g3 + 2*ql*q2), O;
-(2*(q0"2*g3 + 2*q0*ql*q2 - ql”2*g3 + gq272*g3 + q3°3))/(((4*(q0*g3 +

| ql*g2)A2)/(q02 + qlA2 — q2A2 - g3A2)A2 + 1)*(qOA2 + qlA2 - 2A2 -

L q3r2)R2), —(2%(- qON2*q2 + 2*q0*ql*q3 + qlA2*2 + q2°3 + ...
42*q372))/(((4*(q0*q3 + q1*q2)"2)/(q0"2 + qlr2 - q2°2 - q3~2)A2 +

D02 + qIf2 - 272 - g3A)A2), (2%(qON2*ql + 2*q0*q2*q3 + qlA3
T4 q1*gq272 - q1*q372))/(((4*(q0*q3 + ql*q2)72)/(q0"2 + qlr2 - q2n2
TTLgEA2)A2 + 1)R(QON2 + qIA2 - q272 - q3M2)A2), (2*(qON3 + qO*qlr2 -

©q0*q2n2 + q0*q3"2 + 2*qL*q2%q3))/(((4*(A0*q3 + q1*q2)"2)/(q0"2 + ...
ql™2 - g272 - g372)"2 + 1)*(q0”2 + gl1n2 - g2°2 - q3n2)n2), 0, 0, 0];
end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R_phi = [1 0 0; O cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
g2=(R_n2b(3,1)-R_n2b(1,3))/(4*q0);
g3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

q = [q0; al; q2; a3];
end

function [phi, theta, psi] = g2e(X)
q0 = x(1); gl = x(2); 92 = x(3); 93 = x(4);

% Compute Euler Angles

phi = atan2(2*(g2*q3+g0*ql), (q0"2-q1"2-q2"2+q3°2));

theta = asin(-2*(ql*g3-q0*q2));

psi = mod(atan2(2*(ql*q2+q0*qg3), (q0"2+ql"2-q272-q3°2)) ,2*pi);
end

end

124

C. STANDARD UNSCENTED KALMAN FILTER MATLAB CODE

1. Measurement Model One Implementation

function X _HAT = UKF1(u)

%% SPHERICAL SIMPLEX UNSCENTED KALMAN FILTER
% Measurement Model 1
% LT Steven Terjesen
4 September 2014

=

% This estimator is built for use in MATLAB Simulink. There are 38
inputs

% required and can be run in Simulink with an “Interpolated MATLAB

% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through
34

% are the Process Noise and Measurement Noise diagonal elements. These
» elements are not hard coded to allow for easier tuning. Inputs 35

» through 37 are the N-E-D accelerations in the LTP frame. Input 38 is
a

% toggle for selecting whether the data is from Condor or SEAFOX 11.

° o

=

%% System Inputs
% Measurement inputs

CoG = u(1); %GPS Course Over Ground
speed = u(2); %GPS Speed Over Ground
x = u(3); fy = u@); fz = u(b); %IMU Accelerations
p=u(®); qg=u(@); r =u(8); %IMU Angular Rates
N_sat = u(9); E_sat = u(10); D_sat = u(ll); %GPS Position (NED)
heading = u(12); %GPS Heading
Vd_sat = u(13); %GPS LTP Down Velocity
% Process and Measurement Noise Matrices
R = diag(u(14:16)); %AHRS Measurement Noise
R2 = diag(u(17:22)); %INS Measurement Noise
SIM = u(38); %Condor (1) or
SEAFOXT1(2)
% Simulation Selector
if SIM ==

Qv = diag(u(23:25)); %AHRS Process Noise
Condor

Qv2 = diag(u(29:31)); %INS Process Noise
Condor
else

Qv = diag(u(23:28)); %AHRS Process Noise
SEAFOX

125

Qv2 = diag(u(29:34)); %INS Process Noise
SEAFOX

Vd_sat = 0; %No Vertical Velocity
% measurement available
on
% SEAFOX 11, set Vd=0.
D_sat = O; %No Altitude
Measurement
% available on SEAFOXII,
set
% D_sat = O;
end

% GPS Accelerations

ax_gps = u(35); ay gps = u(36); az_gps = u(37); %GPS Accelerations as
% calculated from 3rd
% Order Filter

%% Initialization
persistent x_bar Heading0 H1 H2 i1 jj psiO H3 H4 ...
Px Px2 kk dt g nn nx nxa nQ nR n wc wm X bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 eta eta2 wei latO

% Allows time for Condor To steady out during live testing
if isempty(kk)
kk = 0;
end
if kk < 1 & SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wel = 7.292115*10"-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %Origin of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

% AHRS Initialization

% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);

rz = az_gps-9;

theta_0 = atan((-rx*rz - FTx*sqrt(rx"2+rz”"2-tx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta_0) + rz*cos(theta 0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_theta™2-fc"2))/(fc2-
r_thetan2));

psi_O=heading;

126

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

bg_0 = [0; O; O];

% Inital State Vector

X_bar = [gq_0; bg 0];

% Initial Covariance Estimate

Px = diag([1le-5*ones(1,4) le-3*ones(1,3)]):;

%INS Initialization
% Position & Velocity Initialization

X_0 = N_sat;
y 0 = E_sat;
z 0 = D_sat;
vn_0O speed*cos(CoG) ;

ve 0 = speed*sin(CoG);

vd_0 = Vd_sat;

% Accelerometer Initial Bias Estimate

ba 0 = [0; 0; 0O];

% Initial State Vector

X_bar2 = [x _0; y 0; z 0; vn_O; ve 0; vd 0; ba_0];

% Initial Covariance Estimate

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);

% AHRS SIGMA Weights Initialization

nx = length(x_bar); % Number of AHRS States
nQ = length(diag(Qv)); % Process Noise States
nR = length(diag(R)); % Measurement Noise
States

nxa = nx+nQ+nR; % Total Augmented
States

n = 2*nxa+l; % Number of
Iterations

alpha = 1e-3; % Tunable Scaleing
Factor

beta = 2; % beta = 2 for Gaussian
PDF

kappa = 0; % Tunable Secondary
Scaling

% Factor.

lamda = alpha”2*(nxat+kappa)-nxa; % Weighting Factor

wm = (1/(2*(nxa+lamda)))*ones(n,1); % Measurement Weights
wC = wm; % Covariance Weights
wm(1l) = lamda/(nxat+lamda); % Zeroth Measurement
Weight

wc(1l) = wm(l) + (1-alpha™2+beta); % Zeroth Covariance
Weight

eta = sgrt(nxa+lamda); % Covariance Weighting
% Factor

% INS SIGMA Weights Initialization

nx2 = length(x_bar2); % Number of INS States
nQ2 = length(diag(Qv2)); % Process Noise States
nR2 = length(diag(R2)); % Measurement Noise
States

127

nxa2 = nx2+nQ2+nR2;
States

n2 = 2*nxa2+1;
alpha2 = l1le-3;

beta2 = 2;
PDF

kappa2 = 0;
Scaling

%

lamda2 = alpha2”2*(nxa2+kappa2)-nxa2;
wm2 = (1/(2*(nxa2+lamda2)))*ones(n2,1);
wc2 = wm2;

wm2(1) = lamda2/(nxa2+lamda?);

Weight

wc2(1) = wm2(1) + (1-alpha2”2+beta?);
Weight

eta2 = sqrt(nxa2+lamda2);

%

end
%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Pxa = [Px zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nkR,nQ) R];

% Build 2n+1 Sigma Vectors
Cc = eta*Pxa;
for k = 1:nxa+l
if k ==
X(:,k)
else
X(:,k) = xa + c(k-1,:)7;
X(:,k+tnxa) = xa - c(k-1,:)7;

Xa;

end
end

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k = 1:n

%

%
%
%
%
%

%

%

Total Augmented

% Total Iterations
Tunable, O<alpha<l
beta = 2 for Guassian

Tunable Secondary

Factor.

Weighting Factor
Measurement Weights
Covariance Weights
Zeroth Measurement

Zeroth Covariance

Covariance Weighting
Factor

% Gyro Model w_bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,k); g-X(6,k)-X(9,k); r-X(7, k)-X(10,k)];

if SIM ==
% No Sidereal Rate
w_bt = w _bi_b;
else

128

% Sidereal Rate Included

R t2b = rot_t2b(X(1:4,k));

w_bt = w_bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion Update
wl = w bt(l); w2 = w _bt(2); w3 = w_bt(3);
Q_kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;
w2, -w3, o, wl;
w3, w2, -wl, 0]1*X(1:4, k);

% Quaternion Normalization
Q kpl n = Q kpl/sgrt(Q_kpl~*Q_kpl);

% Gyro Bias Update
if SIM ==
% Constant Bias
bg = X(6:7,Kk);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,K);
end

% Rebuild the State Vector for Each lteration
Xx(:,k) = [Q_kpl_n; bg];

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(kK)*Xx(:z,Kk);
end

% Calculate Error Covariance
Px= zeros(nx, nx);
for k = 1:n
Px = Px + we(K)*((Xx(:,k) - x bar)*(Xx(:,k) - x_bar)’);
end

% Non-Linear Measurement Process Equations

Y = zeros(nR, n); % Pre-Fill
y_bar = zeros(nR,1); % Pre-fill
Heading = zeros(1,n); % Pre-fill
if isempty(Hl)
H1 = zeros(1,n); % Pre-fill
H2 = zeros(1,n); % Pre-Fill
Heading0 = zeros(l1,n); % Pre-fill
ii = zeros(1,n); % Pre-fill
end
for k = 1:n
if SIM ==
noise_R = X(11:13,k);
else
noise R = X(14:16,k);
end

129

% Quaternion to Euler Angles

g0 = Xx(1,k); gl = Xx(2,k); g2 = Xx(3,k); g3 = Xx(4,Kk);

phi = atan2(2*(g2*q3+gq0*ql), q0"2-gli”2-g2”2+q3~2) + noise_R(1);
theta = asin(-2*(gl1*q3-q0*qg2))+ noise_R(2);

psi = mod(atan2(2*(ql*q2+q0*q3), q0™2+qln2-g272-q3°2)+ noise_R(3),
2*pi);

% Unwrap Heading Angle From [0, 2*pi] Range to Avoid Jumps
if nn ==
H1(k) = psi;
Heading0(k) = H1(k);
Heading(k) = H1(k);
else
H2(k) = psi;
iT (H2(k)-H1(k)) <= -100*pi/180
(k) = iik)+1;
end
if (H2(k)-H1(k)) >= 100*pi/180
k) = iik)-1;
end
Heading(k) = HeadingO(k)+((H2(k)+2*pi*ii(k)) - Heading0(k));
H1(k) = H2(k);
end

% Calculated Observations
Y(:,k)=[phi; theta; Heading(k)];

% Calculated Observation Mean
y bar =y bar + wm(k)*Y(:,k);
end

% Estimated Observation Covariance
Py = zeros(nR,nR);
for k = 1:n
Py = Py + we(K)*((Y(:,k) - y_ban)*(Y(:,k) - y_bar)”);
end

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:n
Pxy = Pxy + wc(kK)*((Xx(:,k) - x_bar)*(Y(:,k) - y_bar)’);
end

% Measurement Method 1 (Accelerometer-GPS-Compass Fusion)

% Rotate GPS XYZ Acceleration about Heading

rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);

rz = az_gps-9;

% Computer Pitch

theta = atan((-rx*rz - fx*sqrt(rx"2+rz"2-tx"2)) / (fx"2-rz"2));
% Compute Roll

r_theta = rx*sin(theta) + rz*cos(theta);

fc = fy-(norm(x_bar2(4:6)))*r; % Added Coriolis Term

130

phi = atan((r_theta*ry + fc*sqrt(ry™2+r_theta™2-fc"2)) / (fc"2-

r_thetan2));

% Heading Unwrap from [0, 2*pi]
ifnn==1

psiO = H3;
psi_m = H3;
13=0;
else
H4 = heading;
if (H4-H3) <= -100*pi/180
JjJ =171
end
if (H4-H3) >= 100*pi/180
JJ =11-1;
end
psi_m = psiO+((H4+2*pi*jj) - psiO);
H3 = H4;
end

% Measurement Vector
Z = [phi; theta; psi_m];

% Kalman Filter Equations
K = Pxy/Py;
X_bar = x_bar + K*(Z - y_bar);

% Covariance Corrections
Px = Px - K*Py*K~”;

nn = 2;
%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Pxa2 = [Px2 zeros(nx2,nQ2) zeros(nx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct 2n+l1 SIGMA Vectors
c = eta2*Pxaz2;
for k = 1:nxa2+1
if k ==
X(:,k) = xa;
else
X(:,k) = xa + c(k-1,:)7;
X(:,k+tnxa2) = xa - c(k-1,:)";
end
end

131

% Kalman
% Kalman

Gain
Correction

% Time Update

Xx = zeros(hx2, n2); % Pre-fill
X_bar2 = zeros(nx2, 1); % Pre-fill
for k = 1:n2

% Rotation Matrix
R_t2b rot_t2b(x_bar(1:4));
R b2t R t2b”;

% Position Update
P kpl = X(1:3,k) + dt*[X(4:5,K); -X(6,k)];

% Velocity and Bias Update
if SIM ==
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,kK) - ...
X(10:12, k)) + [0; O; gD);
ba kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,kK) - ...
X(10:12, k)) + [0; 0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(lat0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);
end

% States
Xx(:,k) = [P_kpl; V_kpl; ba kpl];

% Calculated Mean
X_bar2 = x _bar2 + wm2(k)*Xx(:,k);
end

% Predicted Error Covariance
Px2= zeros(nx2, nx2);
for k = 1:n2
Px2 = Px2 + we2(K)*((Xx(:,k) - x_bar2)*(Xx(:,k) - x_bar2)”);
end

% Measurement Equations

Y = zeros(nR2, n2); % Pre-fill
y bar = zeros(nR2,1); % Pre-fill
for k = 1:n2

if SIM ==

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(13:18,k);
else

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(16:21,k);
end

% Calculated Observation Mean
y bar =y bar + wm2(k)*Y(:,k);

132

end

% Estimated Observation Covariance
Py = zeros(nR2,nR2);
for k = 1:n2
Py = Py + we2(kK)*((Y(:,k) - y bar)*(Y(:,k) - y bar)?);
end

% Estimated Cross Covariance
Pxy = zeros(nx2,nR2);
for k = 1:n2
Pxy = Pxy + wc2(K)*((Xx(:,k) - x bar2)*(Y(:,k) - y bar)?);
end

% Measurements
Z = [N_sat; E _sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

X

o Kalman Filter Equations

K = Pxy/Py; % Kalman Gain
» Kalman State Corrections

X_bar2 = x_bar2 + K*(Z - y_bar);

% Covariance Correction

Px2 = Px2 - K*Py*K~”;

=3

X_HAT = [x _bar(1:4); x_bar2(1:6); x_bar(5:7); x _bar2(7:9)];
end

kk=kk+1;

end

function R_t2b = rot_t2b(x)

g0 = x(1); gl = x(2); g2 = x(3); a3 = x(4);

R_t2b = [qO0"2+qln2-g272-g372 2*(gl*q2+q0*g3) 2*(gl*g3-q0*q2);
2*(gq2*ql-q0*q3) q0"2-qln™2+g272-g3°2 2*(g2*q3+q0*ql);
2*(gq3*ql+q0*g2) 2*(q3*q2-q0*gl) q0"2-ql"2-g27°2+q3°2];

end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R_phi = [1 0 0; 0 cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R _n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
g2=(R_n2b(3,1)-R n2b(1,3))/(4*q0);
q3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [d0; 9l1; d2; q3];
end

133

2. Measurement Model Two Implementation

function X_HAT = UKF2(u)
%% UNSCENTED KALMAN FILTER
% Measurement Model 2

% LT Steven Terjesen

% September 2014

% This estimator is built for use In MATLAB Simulink. There are 39

inputs

% required and can be run in Simulink with an “Interpolated MATLAB
% Function” block. The first 13 inputs are the vehicle data: Course

Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro

Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,

and

% Vertical Velocity (zeroed out for SEAFOXI1I1 data). Inputs 14 through

35

% are the Process Noise and Measurement Noise diagonal elements. These

© o

a

<

%% System Inputs

% Measurement inputs

CoG = u(1);

speed = u(2);

x =u(3); fy = u(4); fz = u(d);
p=u(6); qg=u(@; r =u(®;

N_sat = u(9); E_sat = u(10); D_sat = u(ll);

heading = u(12);
Vd_sat = u(13);

% Process and Measurement Noise Matrices

R = diag(u(14:17));
R2 = diag(u(18:23));

SIM = u(39);
SEAFOXI1(2)
%

if SIM ==

Qv = diag(u(24:26));
Condor

Qv2 = diag(u(30:32));
Condor
else

Qv = diag(u(24:29));
SEAFOX

Qv2 = diag(u(30:35));
SEAFOX

Vd_sat = 0;

134

% elements are not hard coded to allow for easier tuning. Inputs 36
% through 38 are the N-E-D accelerations in the LTP frame. Input 39 is

» toggle for selecting whether the data is from Condor or SEAFOX 11.

%GPS Course Over Ground
%GPS Speed Over Ground
%IMU Accelerations

%IMU Angular Rates

%GPS Position (NED)
%GPS Heading

%GPS LTP Down Velocity

%AHRS Measurement Noise
%INS Measurement Noise

%Condor (1) or

Simulation Selector

%AHRS Process Noise

%INS Process Noise

%AHRS Process Noise
%INS Process Noise

%No Vertical Velocity

% measurement available
on

% SEAFOX 11, set Vd=0.

D sat = O; %No Altitude
Measurement
% available on SEAFOXII,
set
% D sat = 0;
end

% GPS Accelerations

ax_gps = u(36); ay gps = u(37); az_gps = u(38); UGPS Accelerations as
% calculated from 3rd
% Order Filter

%% Initialization
persistent x_bar Heading0 H1 H2 i1 jj psiO H3 H4 ...
Px Px2 kk dt g nn nx nxa nQ nR n wc wm X _bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 eta eta2 wei latO

% Allows time for Condor To steady out during live testing
it isempty(kk)
kk = 0;
end
if kk < 1 && SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wei = 7.292115*10"-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %Origin of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

% AHRS Initialization
% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);
ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-g;

theta 0 = atan((-rx*rz - fx*sqrt(rx"2+rz"2-tx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta_0) + rz*cos(theta_0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_thetanr2-fc"2))/(fc2-
r_thetan2));

psi_O=heading;

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

135

bg_0 = [0; O; 0];

% Inital State Vector

X_bar = [gq_0; bg_0];

% Initial Covariance Estimate

Px = diag([le-5*ones(1,4) le-3*ones(1,3)]);

%INS Initialization
% Position & Velocity Initialization

X_0 = N_sat;

y 0 = E_sat;

z 0 = D_sat;

vn_0 = speed*cos(CoG);
ve 0 = speed*sin(CoG);
vd 0 = Vd_sat;

% Accelerometer Initial Bias Estimate

ba 0 = [0; 0; 0O];

% Initial State Vector

X _bar2 = [x 0; y 0; z 0; vn_O; ve 0; vd 0; ba 0];

% Initial Covariance Estimate

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);

% AHRS SIGMA Weights Initialization

nx = length(x_bar); % Number of AHRS States
nQ = length(diag(Qv)); % Process Noise States
nR = length(diag(R)); % Measurement Noise
States

nxa = nx+nQ+nR; % Total Augmented
States

n = 2*nxa+l; % Number of
Iterations

alpha = 1le-3; % Tunable Scaling
Factor

beta = 2; % beta = 2 for Gaussian
PDF

kappa = 0; % Tunable Secondary
Scaling

% Factor.

lamda = alpha™2*(nxa+kappa)-nxa; % Weighting Factor

wm = (1/(2*(nxat+lamda)))*ones(n,1); % Measurement Weights
wC = wm; % Covariance Weights
wm(1l) = lamda/(hxa+lamda); % Zeroth Measurement
Weight

wc(1l) = wm(l) + (1-alpha™2+beta); % Zeroth Covariance
Weight

eta = sgrt(nxat+lamda); % Covariance Weighting
% Factor

% INS SIGMA Weights Initialization

nx2 = length(x_bar2); % Number of INS States
nQ2 = length(diag(Qv2)); % Process Noise States
nR2 = length(diag(R2)); % Measurement Noise
States

nxa2 = nx2+nQ2+nR2; % Total Augmented
States

n2 = 2*nxa2+1; % Total Iterations

136

alpha2 = le-3;

beta2 = 2;
PDF

kappa2 = 0O;
Scaling

%

lamda2 = alpha2”2*(nxa2+kappa2)-nxa2;
wm2 = (1/(2*(nxa2+lamda2)))*ones(n2,1);
wc2 = wm2;

wm2(1) = lamda2/(nxa2+lamda2);

Weight

wc2(1) = wm2(1) + (1-alpha2”~2+beta?);
Weight

eta? = sqrt(nxa2+lamda2?);

%

end
%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Pxa = [Px zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nR,nQ) R];

% Build 2n+1 Sigma Vectors
c = eta*Pxa;
for k = 1:nxa+l
if k ==
X(:,k) = xa;
else
X(:,k) = xa + c(k-1,:)7;
X(:,k+nxa) = xa - c(k-1,:)";
end
end

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k = 1:n

%
%

%

%

%

%

%

Tunable, O<alpha<l
beta = 2 for Guassian

Tunable Secondary

Factor.

Weighting Factor
Measurement Weights
Covariance Weights
Zeroth Measurement

Zeroth Covariance

Covariance Weighting
Factor

% Gyro Model w_bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,k); gq-X(6,k)-X(9,k); r-X(7, k)-X(10,k)];

if SIM ==
% No Sidereal Rate
w_bt = w_bi_b;
else
% Sidereal Rate Included
R_t2b = rot_t2b(X(1:4,k));

w_bt = w_bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];

137

end

% Quaternion Update
wl = w bt(l); w2 = w _bt(2); w3 = w_bt(3);
Q kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;
w2, -w3, o, wl;
w3, w2, -wl, 0]1*X(1:4, k);

% Quaternion Normalization
Q_kpl_n = Q_kpl/sqrt(Q_kpl’*Q_kpl);

% Gyro Bias Update
if SIM ==
% Constant Bias
bg = X(6:7,K);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,kK);
end

% Rebuild the State Vector for Each Iteration
Xx(:,k) = [Q_kpl_n; bg];

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(k)*Xx(:,k);
end

% Calculate Error Covariance
Px= zeros(nx, nx);
for k = 1:n
Px = Px + we(K)*((Xx(:,k) - x_bar)*(Xx(:,k) - x_bar)?);
end

% Non-Linear Measurement Process Equations

Y = zeros(nR, n); % Pre-fill
y bar = zeros(nR,1); % Pre-fill
Heading = zeros(1,n); % Pre-fill
ifT isempty(H1)
H1 = zeros(1,n); % Pre-fill
H2 = zeros(1,n); % Pre-fill
Heading0 = zeros(1,n); % Pre-fill
ii = zeros(1,n); % Pre-fill
end
for k = 1:n

% Rotation Matrix (LTP to Body)
R _t2b = rot_t2b(Xx(1:4,k));
% Gyro Measurements
w_bi = [p; q; r] - Xx(5:7,K);
if SIM ==

noise_ R = X(11:14,k);

w_bt = w_bi;
else

138

noise R = X(14:17,k);
w_bt = w_bi - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion to Euler Angles
q0 = Xx(1,k); g1 = Xx(2,k); g2 = Xx(3,k); g3 = Xx(4,Kk);
psi = mod(atan2(2*(ql1*q2+q0*q3), q0"2+ql"2-g272-q3°2)+ noise_R(4),

2*pi);
% Unwrap Heading Angle From [0, 2*pi] Range to Aviod Jumps
if nn ==

H1(k) = psi;

Heading0(k) = H1(k);
Heading(k) = H1(k);
else
H2(k) = psi;
if (H2(k)-H1(k)) <= -100*pi/180
(k) = ii(k)+1;
end
i (H2(k)-H1(k)) >= 100*pi/180
k) = i1i(k)-1
end
Heading(k) = Heading0(k)+((H2(k)+2*pi*i1i(k)) - HeadingO0(k));
H1(k) = H2(k);
end

% Accelerometer Estimate
FB_hat = R_t2b*[ax_gps; ay_gps; az gps] + ---
cross(w bt, R_t2b*x _bar2(4:6)) -
R_t2b*[0; 0; g]-x_bar2(7:9)-noise R(l 3);

% Calculated Observations
Y(:,k)=[FB_hat; Heading(k)];

% Calculated Observation Mean
y bar =y bar + wm(k)*Y(:,k);
end

% Estimated Observation Covariance
Py = zeros(nR,nR);
for k = 1:
Py = Py + we(K)*((Y(:,k) - y_ban)*(Y(:,k) - y_bar)”);
end

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:
Pxy = Pxy + wc(kK)*((Xx(:,k) - x_bar)*(Y(:,k) - y_bar)’);
end

% Measurement Method 2 (Accelerometer)
% Heading Unwrap from [0, 2*pi]

ifnn==1
H3 = heading;
H4 = O;

139

psiO = H3;

psi_m = H3;

33=0;

else

H4 = heading;

if (H4-H3) <= -100*pi/180
13 = 1i+1;

end

if (H4-H3) >= 100*pi/180
i = 3i-1;

end

psi_m = psiO+((H4+2*pi*jj) - psiO);

H3 = H4;
end

% Measurement Vector
Z = [fx; Ffy; fz; psi_m];

% Kalman Filter Equations
K = Pxy/Py;
X_bar = x_bar + K*(Z - y_bar);

% Covariance Corrections
Px = Px - K*Py*K”;

nn = 2;
%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Pxa2 = [Px2 zeros(nx2,nQ2) zeros(nx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct 2n+1 SIGMA Vectors
c = eta2*Pxa2;
for k = 1:nxa2+1
if k ==
X(:,k) = xa;
else
X(:,k) = xa + c(k-1,:)"

X(:,k+nxa2) = xa - c(k—i,:)’;

end
end

% Time Update

Xx = zeros(nx2, n2);

X_bar2 = zeros(nx2, 1);

for k = 1:n2

% Rotation Matrix

R_t2b = rot_t2b(x_bar(1:4));

140

% Kalman Gain
% Kalman Correction

% Pre-fill
% Pre-fill

R_b2t = R_t2b”;

% Posittion Update
P kpl = X(1:3,k) + dt*[X(4:5,K); -X(6,Kk)];

% Velocity and Bias Update
if SIM ==
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; 0; gD):
ba kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; 0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(lat0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);
end

% States
Xx(:,k) = [P_kpl; V_kpl; ba kpl];

% Calculated Mean
X_bar2 = x_bar2 + wm2(k)*Xx(:,k);
end

% Predicted Error Covariance
Px2= zeros(nx2, nx2);
for k = 1:n2
Px2 = Px2 + we2(K)*((Xx(:,k) - x bar2)*(Xx(:,k) - x _bar2)”);
end

% Measurement Equations

Y = zeros(nR2, n2); % Pre-fill
y_bar = zeros(nR2,1); % Pre-fill
for k = 1:n2
if SIM == 1

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(13:18,k);
else

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(16:21,k);
end

% Calculated Observation Mean
y_bar =y bar + wm2(k)*Y(:,k);
end

% Estimated Observation Covariance
Py = zeros(nR2,nR2);
for k = 1:n2
Py = Py + we2(kK)*((Y(:,k) - y bar)*(Y(:,k) - y bar)?);
end

141

% Estimated Cross Covariance
Pxy = zeros(nx2,nR2);
for k = 1:n2
Pxy = Pxy + wc2(K)*((Xx(:,k) - x bar2)*(Y(:,k) - y bar)?);
end

% Measurements
Z = [N_sat; E_sat; D_sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

% Kalman Filter Equations

K = Pxy/Py; % Kalman Gain
o Kalman State Corrections

X_bar2 = x_bar2 + K*(Z - y bar);

% Covariance Correction

Px2 = Px2 - K*Py*K~”;

X

X_HAT = [x _bar(1:4); x_bar2(1:6); x_bar(5:7); x bar2(7:9)];
end

kk=kk+1;

end

function R_t2b = rot_t2b(x)

g0 = x(1); gl = x(2); g2 = x(3); a3 = x(4);

R_t2b = [q0™2+qlr2-q272-q372 2*(ql*q2+q0*q3) 2*(ql*q3-q0*qg2);
2*(gq2*ql-q0*qg3) q0"2-ql"™2+g272-g3°2 2*(g2*q3+q0*ql);
2*(g3*ql+q0*g2) 2*(g3*g2-q0*gql) qO0N2-ql"N2-g2°2+q3°2];

end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R _phi = [1 0 0; 0 cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
q2=(R_n2b(3,1)-R _n2b(1,3))/(4*q0);
q3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [g0; 9gl1; d2; q3];
end

D. SQUARE ROOT UNSCENTED KALMAN FILTER MATLAB CODE

1. Measurement Model One Implementation

function X HAT = SRUKF1(u)

%% SQUARE ROOOT UNSCENTED KALMAN FILTER
% Measurement Model 1

% LT Steven Terjesen

142

% September 2014

% This estimator is built for use in MATLAB Simulink. There are 38
inputs

% required and can be run in Simulink with an “Interpolated MATLAB

% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through
34

% are the Process Noise and Measurement Noise diagonal elements. These
» elements are not hard coded to allow for easier tuning. Inputs 35

4 through 37 are the N-E-D accelerations in the LTP frame. Input 38 is
a

4 toggle for selecting whether the data is from Condor or SEAFOX 11.

==

<

%% System Inputs
% Measurement inputs

CoG = u(1); %GPS Course Over Ground
speed = u(2); %GPS Speed Over Ground
x = u(3); fy = u4); fz = u(d); %IMU Accelerations
p=u®); q=u(@); r =u(8); %IMU Angular Rates
N_sat = u(9); E sat = u(10); D_sat = u(ll); %GPS Position (NED)
heading = u(12); %GPS Heading
Vd_sat = u(13); %GPS LTP Down Velocity
% Process and Measurement Noise Matrices
R = diag(u(14:16)); %AHRS Measurement Noise
R2 = diag(u(17:22)); %INS Measurement Noise
SIM = u(38); %Condor(1) or
SEAFOXT1(2)
% Simulation Selector
if SIM ==

Qv = diag(u(23:25)); %AHRS Process Noise
Condor

Qv2 = diag(u(29:31)); %INS Process Noise
Condor
else

Qv = diag(u(23:28)); %AHRS Process Noise
SEAFOX

Qv2 = diag(u(29:34)); %INS Process Noise
SEAFOX

Vd_sat = 0; %No Vertical Velocity
% measurement available
on
% SEAFOX 11, set Vd=0.

D _sat = 0; %No Altitude
Measurement

143

% available on SEAFOXII,
set

% D sat = 0;

end

% GPS Accelerations

ax_gps = u(35); ay gps = u(36); az_gps = u(37); UGPS Accelerations as
% calculated from 3rd
% Order Filter

%% Initialization
persistent x_bar Heading0 H1 H2 i1 jj psiO H3 H4 ...
Sx Sx2 kk dt g nn nx nxa nQ nR n wc wm X _bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 wei latO eta eta2

% Allows time for Condor To steady out during live testing
it isempty(kk)
kk = 0;
end
if kk < 1 && SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wei = 7.292115*10"-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %Origin of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

% AHRS Initialization
% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);
ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-g;

theta 0 = atan((-rx*rz - fx*sqrt(rx"2+rz"2-fx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta_0) + rz*cos(theta_0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_thetar2-fc"2))/(fc2-
r_thetan2));

psi_O=heading;

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

bg_0 = [0; O; 0];

% Inital State Vector

X_bar = [g_0; bg_0];

% Initial Covariance Estimate

Px = diag([le-5*ones(1,4) le-3*ones(1,3)]);

144

% Inital Matrix Square Root
Sx = chol(Px);

%INS Initialization
% Position & Velocity Initialization

x_0 = N_sat;

y 0 = E_sat;

z 0 = D_sat;

vn_0 = speed*cos(CoG);
ve_0 = speed*sin(CoG);
vd 0 = Vd_sat;

% Accelerometer Initial Bias Estimate
ba 0 = [0; 0; 0O];

% Initial State Vector

X_bar2 = [x 0; y 0; z_0; vn_0O; ve_0; vd_0O;
% Initial Covariance Estimate

ba 0];

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);

% Inital Matrix Square Root
Sx2 = chol(Px2);

% AHRS SIGMA Weights Initialization
nx length(x_bar);

nQ length(diag(Qv));

nkR length(diag(R));

States
nxa =
States
n = 2*nxa+l;
Iterations
alpha = 1le-3;
Factor
beta =
PDF
kappa =
Scaling
%

lamda = alpha”2*(nxat+kappa)-nxa;

wm = (1/(2*(nxa+lamda)))*ones(n,1);
wc = wm;

wm(1) = lamda/(nxa+lamda);

nx+nQ+nR;

2;

0;

Weight

wc(1l) = wm(l) + (1-alpha™2+beta);
Weight

eta = sgrt(nxatlamda);

%

% INS SIGMA Weights Initialization
nx2 = length(x_bar2);

nQ2 = length(diag(Qv2));

nR2 = length(diag(R2));

States

nxa2 = nx2+nQ2+nR2;

States

n2 = 2*nxa2+1;
alpha2 = 1le-3;

145

%
%
%

%

%
%
%
%
%
%
%
%

%

%
%
%

%

%

Number of AHRS States
Process Noise States
Measurement Noise
Total Augmented

% Number of

Tunable Scaling

beta = 2 for Gaussian
Tunable Secondary
Factor.

Weighting Factor
Measurement Weights
Covariance Weights
Zeroth Measurement
Zeroth Covariance

Covariance Weighting
Factor

Number of INS States
Process Noise States
Measurement Noise

Total Augmented

% Total lterations
Tunable, O<alpha<l

beta2 = 2;
PDF

kappa2 = 0;
Scaling

%

lamda2 = alpha2”2*(nxa2+kappa2)-nxa2;
wm2 = (1/(2*(nxa2+lamda2)))*ones(n2,1);
wc2 = wm2;

wm2(1) = lamda2/(nxa2+lamda?);

Weight

wc2(1) = wm2(1) + (1-alpha2”~2+beta?);
Weight

eta? = sqrt(nxa2+lamda2?);

%

end

%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Sxa = [Sx zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nR,nQ) R];

% Build 2n+1 Sigma Vectors
c = eta*Sxa;
for k = 1:nxa+l
if k ==
X(:,k) = xa;
else
X(:,k) = xa + c(k-1,:)";
X(:,k+tnxa) = xa - c(k-1,:)7;
end
end

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k 1:n

%

%

%

%

%

%

beta = 2 for Gaussian
Tunable Secondary

Factor.

Weighting Factor
Measurement Weights
Covariance Weights
Zeroth Measurement

Zeroth Covariance

Covariance Weighting
Factor

% Gyro Model w_bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,k); gq-X(6,k)-X(9,k); r-X(7, k)-X(10,k)];

if SIM ==
% No Sidereal Rate
w_bt = w_bi_b;
else
% Sidereal Rate Included
R_t2b = rot_t2b(X(1:4,k));

w_bt = w _bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];

end

146

% Quaternion Update
wl = w bt(1); w2 = w_bt(2); w3 = w_bt(3);
Q _kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;
w2, -w3, o, wl;
w3, w2, -wl, 01*X(1:4, K);

% Quaternion Normalization
Q_kpl_n = Q_kpl/sqrt(Q_kpl’*Q_kpl);

% Gyro Bias Update
if SIM==1
% Constant Bias
bg = X(6:7,k);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,k);
end

% Rebuild the State Vector for Each Iteration
Xx(:,k) = [Q_kpl n; bg]l;

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(k)*Xx(:,k);
end

% Calculate Error Covariance

Ax = sgrt(wc(2))*(Xx(:,2:n) - x _bar(:,ones(1,n-1)));

% QR Decomposition

[~., sx] = qr(Ax”,0);

% Cholesky Update (Downdate for negative zeroth weight)
Sx = cholupdate(sx, sqrt(-wc(1))*(Xx(:,1)-x_bar), “-7);

% Non-Linear Measurement Process Equations

Y = zeros(nR, n); % Pre-fill
y _bar = zeros(nR,1); % Pre-fill
Heading = zeros(1,n); % Pre-fill
if isempty(Hl)
H1 = zeros(1,n); % Pre-fill
H2 = zeros(1,n); % Pre-fill
Heading0 = zeros(l,n); % Pre-fill
ii = zeros(1,n); % Pre-fill
end
for k = 1:n
if SIM==1
noise_ R = X(11:13,k);
else
noise_ R = X(14:16,k);
end

% Quaternion to Euler Angles
g0 = Xx(1,k); gl = Xx(2,K); g2 = Xx(3,k); g3 = Xx(4,K);
phi = atan2(2*(g2*g3+g0*ql), q0"2-gi”2-g272+q3~2) + noise_R(1);

147

theta = asin(-2*(gl1*q3-q0*qg2))+ noise_R(2);
psi = mod(atan2(2*(ql*q2+q0*q3), q0"2+ql"2-g272-q3°2)+ noise_R(3),
2*pi);

% Unwrap Heading Angle From [0, 2*pi] Range to Avoid Jumps
ifnn==1
H1(k) = psi;
Heading0(k) = H1(k);
Heading(k) = H1(k);
else
H2(k) = psi;
if (H2(k)-H1(k)) <= -100*pi/180
(k) = ii(k)+1;
end
if (H2(k)-H1(k)) >= 100*pi/180
(k) = i1ik)-1;
end
Heading(k) = Heading0(k)+((H2(k)+2*pi*i1i(k)) - Heading0(k));
H1(k) = H2(k);
end

% Calculated Observations
Y(:,k)=[phi; theta; Heading(k)];

% Calculated Observation Mean
y bar = y bar + wm(k)*Y(:,k);
end

% Estimated Observation Covariance

Bx = sqrt(wc(2))*(Y(:,2:n) - y bar(:,ones(1,n-1)));

% QR Decomposition

[~, syl = gr(Bx”,0); % **”qr” PRODUCES UPPER TRIANGULAR MATRIX**
% Cholesky Update (or Downdate)

Sy = cholupdate(sy, sqrt(-wc(1))*(Y(:,1)-y bar), “-7);

% ***Sy MUST BE LOWER TRIANGULAR***

Sy = Sy”;

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:n
Pxy = Pxy + wc(K)*((Xx(:,k) - x_bar)*(Y(:,k) - y bar)?);
end

% Measurement Method 1 (Accelerometer-GPS-Compass Fusion)
% Rotate GPS XYZ Acceleration about Heading

rx = ax_gps*cos(heading)+ay_gps*sin(heading);
ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-9;

% Computer Pitch

theta = atan((-rx*rz - fx*sqrt(rx"2+rz"2-tx"2)) / (tx"2-rz"2));
% Compute Roll

r_theta = rx*sin(theta) + rz*cos(theta);

fc = fy-(norm(x_bar2(4:6)))*r; % Added Coriolis Term

148

phi = atan((r_theta*ry + fc*sqrt(ry™2+r_theta™2-fc"2)) / (fc"2-

r_thetan2));

% Heading Unwrap from [0, 2*pi]
ifnn==1

psiO = H3;
psi_m = H3;
13=0;
else
H4 = heading;
if (H4-H3) <= -100*pi/180
JjJ =171
end
if (H4-H3) >= 100*pi/180
JJ =11-1;
end
psi_m = psiO+((H4+2*pi*jj) - psiO);
H3 = H4;
end

% Measurement Vector
Z = [phi; theta; psi_m];

% Kalman Filter Equations

K = (Pxy/Sy’)/Sy;

Squares

X_bar = x_bar + K*(Z - y_bar);

% Covariance Corrections
Ux = K*Sy;
for k = 1:nR
Sx = cholupdate(Sx, Ux(:,k), “-7);
end

Sx = Sx7;
TRIANGULAR
nn = 2;

%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Sxa2 = [Sx2 zeros(nx2,nQ2) zeros(nx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct n+2 SIGMA Vectors
c = eta2*Sxa2;
for k = 1:nxa2+1

if k ==

149

=4

0

S

0

=4

0

X

0

Efficient Least

Kalman Correction

Cholesky Downdate

MUST BE LOWER

X(z,K)
else

X(:,k) = xa + c(k-1,:)7;

X(:,k+tnxa2) = xa - c(k-1,:)7;

Xa,;

end
end

% Time Update

Xx = zeros(nx2, n2); % Pre-fill
X_bar2 = zeros(nx2, 1); % Pre-fill
for k = 1:n2

% Rotation Matrix
R_t2b = rot_t2b(x_bar(1:4));
R b2t = R _t2b”;

% Position Update
P kpl = X(1:3,k) + dt*[X(4:5,K); -X(6,k)];

% Velocity and Bias Update
if SIM =1
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; 0; gD):
ba kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; O0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(lat0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);
end

% States
Xx(:,k) = [P_kpl; V_kpl; ba_kpl];

% Calculated Mean
X_bar2 = x_bar2 + wm2(k)*Xx(:,k);
end

% Predicted Error Covariance

Ax = sqrt(wc2(2))*(Xx(:,2:n2) - x_bar2(:,ones(1,n2-1)));

% QR Decomposition

[-. Sx2] = qr(Ax”,0);

% Cholesky Factor Update

Sx2 = cholupdate(Sx2, sqrt(-wc2(1))*(Xx(:,1)-x_bar2), “-7);

% Measurement Equations

Y = zeros(nR2, n2); % Pre-fill
y _bar = zeros(nR2,1); % Pre-fill
for k = 1:n2
if SIM == 1

% Calculated Observations
Y(:,k)=Xx(1:6,k)+X(13:18,k);

150

else
% Calculated Observations
Y(:,k)=Xx(1:6,k)+X(16:21,k);
end

% Calculated Observation Mean
y bar =y bar + wm2(k)*Y(:,k);
end

% Estimated Observation Covariance

Bx = sqrt(wc2(2))*(Y(:,2:n2) - y bar(:,ones(1,n2-1)));
% QR Decomposition

[~. Syl = qr(Bx”,0);

% Cholesky Factor Update

Sy = cholupdate(Sy, sqrt(-wc2(1))*(Y(:,1)-y bar), “-7);
% Make Sy Lower Triangular

Sy = Sy’;

% Estimated Cross Covariance
Pxy = zeros(nx2,nR2);
for k = 1:n2
Pxy = Pxy + wc2(kK)*((Xx(:,k) - x bar2)*(Y(:,k) - y_bar)’);
end

% Measurements
Z = [N_sat; E _sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

t» Kalman Filter Equations

% Kalman Gain w/ Efficient Least Squares
K = (Pxy/Sy*)/Sy;

% Kalman State Corrections

X_bar2 = x _bar2 + K*(Z - y bar);

% Covariance Correction

Ux = K*Sy;

for k = 1:nR2

Sx2 = cholupdate(Sx2, Ux(:,k), “-7);

XX

end
% Make Sx2 Lower Right Triangular
Sx2 = Sx27;

X_HAT = [x _bar(1:4); x_bar2(1:6); x_bar(5:7); x _bar2(7:9)];
end

kk=kk+1;

end

function R_t2b = rot_t2b(x)

g0 = x(1); gl = x(2); 92 = x(3); a3 = x(4);

R_t2b = [q0O™N2+qln™2-g272-g37°2 2*(ql*q2+q0*g3) 2*(ql*q3-q0*g2);
2*(q2*ql-q0*q3) q0"2-qlnN2+g272-g3°2 2*(g2*q3+q0*ql);
2*(gq3*ql+q0*qg2) 2*(gq3*q2-q0*ql) q0"2-ql"2-q272+q3°2];

end

function g = e2q(phi, theta, psi)
% Form Rotation Matrix

151

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R_theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R_phi = [1 0 0; O cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R _n2b(3,2))/(4*q0);
q2=(R_n2b(3,1)-R _n2b(1,3))/(4*q0);
g3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [g0; 9gi1; d2; q3];
end

2. Measurement Model Two Implementation

function X_HAT = SRUKF2(u)

%% SQUARE ROOOT UNSCENTED KALMAN FILTER
% Measurement Model 2

% LT Steven Terjesen

% September 2014

% This estimator is built for use In MATLAB Simulink. There are 39
inputs

% required and can be run in Simulink with an “Interpolated MATLAB

% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through
35

% are the Process Noise and Measurement Noise diagonal elements. These
» elements are not hard coded to allow for easier tuning. Inputs 36

% through 38 are the N-E-D accelerations in the LTP frame. Input 39 is
a

» toggle for selecting whether the data is from Condor or SEAFOX 11.

XX

X

%% System Inputs
% Measurement inputs

CoG = u(1); %GPS Course Over Ground
speed = u(2); %GPS Speed Over Ground
x = u@3); fy = u@@); fz = u(®); %IMU Accelerations
p=u®); q=u@); r =u(8); %IMU Angular Rates
N_sat = u(9); E_sat = u(10); D_sat = u(ll); %GPS Position (NED)
heading = u(12); %GPS Heading

Vd_sat = u(13); %GPS LTP Down Velocity
% Process and Measurement Noise Matrices

R = chol(diag(u(14:17))); %AHRS Measurement Noise
R2 = chol(diag(u(18:23))); %INS Measurement Noise

152

SIM = u(39); %Condor(1) or
SEAFOX11(2)

% Simulation Selector
if SIM ==

Qv = chol(diag(u(24:26))); %AHRS Process Noise
Condor

Qv2 = chol(diag(u(30:32))); %INS Process Noise
Condor
else

Qv = chol(diag(u(24:29))); %AHRS Process Noise
SEAFOX

Qv2 = chol(diag(u(30:35))); %INS Process Noise
SEAFOX

Vd_sat = 0; %No Vertical Velocity
% measurement available
on
% SEAFOX 11, set Vd=0.

D sat = 0; %No Altitude
Measurement
% available on SEAFOXII,
set
% D sat = 0;
end

% GPS Accelerations

ax_gps = u(36); ay gps = u(37); az_gps = u(38); UGPS Accelerations as
% calculated from 3rd
% Order Filter

%% Initialization
persistent x_bar Heading0 H1 H2 i1 jj psiO H3 H4 __.
Sx Sx2 kk dt g nn nx nxa nQ nR n wc wm X_bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 wei latO eta eta2

% Allows time for Condor To steady out during live testing
if isempty(kk)
kk = 0;
end
if kk < 1 && SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wel = 7.292115*10"-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %O0rigin of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

153

% AHRS Initialization
% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);

rz = az_gps-g;

theta_0 = atan((-rx*rz - FTx*sqrt(rx"2+rz”"2-tx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta_0) + rz*cos(theta 0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_theta™2-fc"2))/(fc"2-

i
r_thetan2));
psi_O=heading;
% Euler Angles to Quaternions
q_0 = e2q(phi_0, theta 0, psi_0);
% Gyro Bias Initial Values
bg_0 = [0; O; O];
% Inital State Vector
X_bar = [gq_0; bg 0];
% Initial Covariance Estimate
Px = diag([1le-5*ones(1,4) le-3*ones(1,3)]);
% Inital Matrix Square Root
Sx = chol(Px);

%INS Initialization
% Position & Velocity Initialization

X_0 = N_sat;
y 0 = E_sat;
z 0 = D_sat;
vn_0O speed*cos(CoG);

ve 0 = speed*sin(CoG);

vd 0 = Vd_sat;

% Accelerometer Initial Bias Estimate

ba 0 = [0; 0; 0];

% Initial State Vector

X _bar2 = [x 0; y 0; z 0; vn_O; ve 0; vd 0; ba 0];

% Initial Covariance Estimate

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);
% Inital Matrix Square Root

Sx2 = chol(Px2);

% AHRS SIGMA Weights Initialization

nx = length(x_bar); % Number of AHRS States
nQ = length(diag(Qv)); % Process Noise States
nR = length(diag(R)); % Measurement Noise
States

nxa = nx+nQ+nR; % Total Augmented
States

n = 2*nxa+1; % Number of
Iterations

alpha = 1le-3; % Tunable Scaling
Factor

beta = 2; % beta = 2 for Gaussian
PDF

kappa = 0; % Tunable Secondary
Scaling

154

%

lamda = alpha™2*(nxa+kappa)-nxa;

wm = (1/(2*(nxat+lamda)))*ones(n,1);
wc = wm;

wm(1) = lamda/(nxa+lamda);

Weight

wc(1l) = wm(l) + (1-alpha™2+beta);
Weight

eta = sgrt(nxatlamda);

%

% INS SIGMA Weights Initialization

nx2 = length(x_bar2);
nQ2 = length(diag(Qv2));
nR2 = length(diag(R2));
States

nxa2 = nx2+nQ2+nR2;
States

n2 = 2*nxa2+1;
alpha2 = le-3;

beta2 = 2;
PDF

kappa2 = 0;
Scaling

%

lamda2 = alpha2”2*(nxa2+kappa2)-nxa2;
wm2 = (1/(2*(nxa2+lamda2)))*ones(n2,1);
wc2 = wm2;

wm2(1) = lamda2/(nxa2+lamda2);

Weight

wc2(1) = wm2(1) + (1-alpha2”™2+beta?);
Weight

eta2 = sqrt(nxa2+lamda2);

%

end
%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Sxa = [Sx zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nR,nQ) R];

% Build n+2 Sigma Vectors
c = eta*Sxa;
for k = 1:nxa+1
if k ==
X(:,k)
else
X(:,k) = xa + c(k-1,:)";

Xa,;

155

%
%
%
%
%

%

%
%
%
%
%
%

%

Factor.

Weighting Factor
Measurement Weights
Covariance Weights
Zeroth Measurement

Zeroth Covariance

Covariance Weighting
Factor

Number of INS States
Process Noise States
Measurement Noise

Total Augmented

% Total lterations
Tunable, O<alpha<l
beta = 2 for Gaussian

Tunable Secondary

Factor.

Weighting Factor
Measurement Weights
Covariance Weights
Zeroth Measurement

Zeroth Covariance

Covariance Weighting
Factor

X(:,k+tnxa) = xa - c(k-1,:)7;
end
end

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k 1:n

% Gyro Model w_bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,k); g-X(6,k)-X(9,k); r-X(7, k)-X(10,k)1;

if SIM ==

% No Sidereal Rate

w_bt = w_bi_b;
else

% Sidereal Rate Included

R_t2b = rot_t2b(X(1:4,k));

w_bt = w_bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion Update
wl = w bt(l); w2 = w_bt(2); w3 = w_bt(3);
Q kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;
w2, -w3, o, wl;
w3, w2, -wl, 01*X(1:4, K);

% Quaternion Normalization
Q_kpl_n = Q_kpl/sqrt(Q_kpl’*Q_kpl);

% Gyro Bias Update
if SIM == 1
% Constant Bias
bg = X(6:7,k);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,k);
end

% Rebuild the State Vector for Each Iteration
Xx(:,k) = [Q_kpl_n; bg];

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(k)*Xx(:,k);
end

% Calculate Error Covariance

Ax = sgrt(wc(2))*(Xx(:,2:n) - x _bar(:,ones(1,n-1)));

% QR Decomposition

[~. sx] = qr(Ax”,0);

% Cholesky Update (Downdate for negative zeroth weight)
Sx = cholupdate(sx, sqrt(-wc(1))*(Xx(:,1)-x_bar), “-7);

156

% Non-Linear Measurement Process Equations

Y = zeros(nR, n); % Pre-Fill
y_bar = zeros(nR,1); % Pre-fill
Heading = zeros(1,n); % Pre-fill
if isempty(H1l)
H1 = zeros(1,n); % Pre-Ffill
H2 = zeros(1,n); % Pre-Fill
Heading0 = zeros(1,n); % Pre-fill
il = zeros(1,n); % Pre-fill
end
for k =

% Rotation Matrix (LTP to Body)
R_t2b = rot_t2b(Xx(1:4,k));
% Gyro Measurements
w_bi = [p; q; r] - Xx(5:7,K);
if SIM ==
noise_R = X(11:14,k);
w_bt = w_bi;
else
noise R = X(14:17,k);
w_bt = w_bi - R _t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion to Euler Angles
q0 = Xx(1,k); g1 = Xx(2,k); g2 = Xx(3,k); g3 = Xx(4,Kk);
psi = mod(atan2(2*(ql1*q2+q0*q3), q0"2+ql™2-g272-q3°2)+ noise_R(4),

2*pi);
% Unwrap Heading Angle From [0, 2*pi] Range to Avoid Jumps
if nn ==

H1(k) = psi;

Heading0(k) = H1(k);
Heading(k) = H1(k);
else

H2(k) = psi;

if (H2(k)-H1(k)) <= -100*pi/180
(k) = ii(k)+1;

end

it (H2(k)-H1(k)) >= 100*pi/180
ik = i1i1(k-1

end

Heading(k) = Heading0(k)+((H2(k)+2*pi*i1i(k)) - HeadingO0(k));
H1(k) = H2(K);
end

% Accelerometer Estimate
FB _hat = R_t2b*[ax_gps; ay_gps; az gps] + ---
cross(w bt, R_t2b*x _bar2(4:6)) -
R_t2b*[0; 0; g]-x_bar2(7:9)-noise R(l 3);

% Calculated Observations
Y(:,k)=[FB_hat; Heading(k)];

157

% Calculated Observation Mean
y bar = y bar + wm(k)*Y(:,k);
end

% Estimated Observation Covariance

Bx = sqrt(wc(2))*(Y(:,2:n) - y bar(:,ones(1,n-1)));

% QR Decomposition

[~, sy] = qr(Bx”,0); % **”qr” PRODUCES UPPER TRIANGULAR MATRIX**
% Cholesky Update (or Downdate)

Sy = cholupdate(sy, sqrt(-wc(D))*(Y(:,1)-y bar), “-7);

% ***Sy MUST BE LOWER TRIANGULAR***

Sy = Sy’;

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:n
Pxy = Pxy + wc(K)*((Xx(:,k) - x_bar)*(Y(:,k) - y bar)?);
end

% Measurement Method 2 (Accelerometer)

% Heading Unwrap from [0, 2*pi]

ifnn=1
H3 = heading;
H4 = O;
psiO = H3;
psi_m = H3;
33=0;

else

H4 = heading;

if (H4-H3) <= -100*pi/180
i3 = 13+1;

end

if (H4-H3) >= 100*pi/180
1] ;

1
\
\

|

=

end
psi_m = psiO+((H4+2*pi*jj) - psiO);
H3 = H4;

end

% Measurement Vector
Z = [fx; Fy; fz; psi_m];

% Kalman Filter Equations

K = (Pxy/Sy’)/Sy; % Efficient Least
Squares
X_bar = x_bar + K*(Z - y_bar); % Kalman Correction

% Covariance Corrections

Ux = K*Sy;
for k = 1:nR

Sx = cholupdate(Sx, Ux(:,k), “-7); % Cholesky Downdate
end

158

Sx = Sx7; % MUST BE LOWER
TRIANGULAR

nn = 2;
%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Sxa2 = [Sx2 zeros(nx2,nQ2) zeros(nx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct n+2 SIGMA Vectors
c = eta2*Sxa2;
for k = 1:nxa2+1
ifk=1
X(:,k)
else
X(:,k) = xa + c(k-1,:)7;
X(:,k+nxa2) = xa - c(k-1,:)7;

Xa,;

end
end

% Time Update

Xx = zeros(hx2, n2); % Pre-fill
X_bar2 = zeros(nx2, 1); % Pre-fill
for k = 1:n2

% Rotation Matrix
R_t2b rot_t2b(x_bar(1:4));
R b2t R t2b7;

% Position Update
P kpl = X(1:3,k) + dt*[X(4:5,Kk); -X(6,k)];

% Velocity and Bias Update
if SIM ==
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; O; gD);
ba_kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; 0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(l1at0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);
end

% States
Xx(:,k) = [P_kpl; V_kpl; ba kpl];

159

% Calculated Mean
X_bar2 = x_bar2 + wm2(k)*Xx(:,k);
end

% Predicted Error Covariance

Ax = sgrt(wc2(2))*(Xx(:,2:n2) - x _bar2(:,ones(1,n2-1)));

% QR Decomposition

[~. Sx2] = qr(Ax”,0);

% Cholesky Factor Update

Sx2 = cholupdate(Sx2, sqrt(-wc2(1))*(Xx(:,1)-x_bar2), “-7);

% Measurement Equations

Y = zeros(nR2, n2); % Pre-fill
y_bar = zeros(nR2,1); % Pre-fill
for k = 1:n2

if SIM ==

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(13:18,k);
else

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(16:21,k);
end

% Calculated Observation Mean
y_bar =y bar + wm2(k)*Y(:,k);
end

% Estimated Observation Covariance

Bx = sqrt(wc2(2))*(Y(:,2:n2) - y bar(:,ones(1,n2-1)));
% QR Decomposition

[~. Syl = ar(Bx”,0);

% Cholesky Factor Update

Sy = cholupdate(Sy, sqrt(-wc2(1))*(Y(:,1)-y _bar), “-7);
% Make Sy Lower Triangular

Sy = 8y’;

% Estimated Cross Covariance
Pxy = zeros(nx2,nR2);
for k = 1:n2
Pxy = Pxy + wc2(K)*((Xx(:,k) - x bar2)*(Y(:,k) - y bar)?);
end

% Measurements
Z = [N_sat; E _sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

% Kalman Filter Equations

% Kalman Gain w/ Efficient Least Squares
K = (Pxy/Sy”)/Sy;

t» Kalman State Corrections

X_bar2 = x _bar2 + K*(Z - y bar);

% Covariance Correction

Ux = K*Sy;

for k = 1:nR2

X

160

Sx2 = cholupdate(Sx2, Ux(:,k), “-7);

end
% Make Sx2 Lower Right Triangular
Sx2 = Sx27;

X_HAT = [x bar(1:4); x_bar2(1:6); x_bar(5:7); x _bar2(7:9)];
end

kk=kk+1;

end

function R_t2b = rot_t2b(x)

q0 = x(1); ql = x(2); 92 = x(3); 93 = x(4);

R_t2b = [q0"2+qln™2-g272-q372 2*(ql*q2+q0*g3) 2*(ql*q3-q0*g2);
2*(q2*q1l-q0*q3) q0"2-qlnN2+g272-g3°2 2*(g2*q3+q0*ql);
2*(gq3*ql+q0*g2) 2*(g3*q2-q0*ql) q0N2-ql"2-g27°2+q3°2];

end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R_phi = [1 0 0; O cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
g2=(R_n2b(3,1)-R_n2b(1,3))/(4*q0);
q3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [90; qgl1; 92; q3];
end

E. SPHERICAL SIMPLEX UNSCENTED KALMAN FILTER MATLAB
CODE

1. Measurement Model One Implementation

function X HAT = SSUKF1(u)

%% SPHERICAL SIMPLEX UNSCENTED KALMAN FILTER
% Measurement Model 1

% LT Steven Terjesen

» September 2014

X

% This estimator is built for use in MATLAB Simulink. There are 38
inputs

% required and can be run in Simulink with an “Interpolated MATLAB
% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

161

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,

and

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through

34

% are the Process Noise and Measurement Noise diagonal elements. These
% elements are not hard coded to allow for easier tuning. Inputs 35

X

a

=S4

%% System Inputs

% Measurement inputs
CoG = u(1);

speed = u(2);

x = u(3); fy = u4); fz

p=u(); g=u(; r =

N_sat = u(9); E_sat = u(10); D_sat = u(ll);

heading = u(12);
Vd_sat = u(13);

% Process and Measurement Noise Matrices

R = diag(u(14:16));
R2 = diag(u(17:22));

SIM = u(38);
SEAFOX11(2)
%

if SIM ==

Qv = diag(u(23:25));
Condor

Qv2 = diag(u(29:31));
Condor
else

Qv = diag(u(23:28));
SEAFOX

Qv2 = diag(u(29:34));
SEAFOX

Vd_sat = 0;
%
on
%

D_sat = O;
Measurement
%
set
%
end

% GPS Accelerations
ax_gps = u(35); ay_gps

u(36); az_gps

» through 37 are the N-E-D accelerations in the LTP frame. Input 38 is

% toggle for selecting whether the data is from Condor or SEAFOX 11.

%GPS Course Over Ground
%GPS Speed Over Ground
%IMU Accelerations

%IMU Angular Rates

%GPS Position (NED)
%GPS Heading

%GPS LTP Down Velocity

%AHRS Measurement Noise
%INS Measurement Noise

%Condor(1) or

Simulation Selector

%AHRS Process Noise

%INS Process Noise

%AHRS Process Noise
%INS Process Noise

%No Vertical Velocity
measurement available

SEAFOX 11, set Vd=0.
%No Altitude

available on SEAFOXII,

D_sat = O;

%WGPS Accelerations as
% calculated from 3rd
% Order Filter

%% Initialization
persistent x_bar Heading0 H1 H2 i1 jj psiO H3 H4 ...
Px Px2 kk dt g nn nx nxa nQ nR n wc wm X _bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 sig sig2 wei latO

% Allows time for Condor To steady out during live testing
it isempty(kk)
kk = 0;
end
if kk < 1 && SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscel laneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wei = 7.292115*107-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %Origin of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

% AHRS Initialization
% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);
ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-9;

theta 0 = atan((-rx*rz - fx*sqrt(rx"2+rz"2-tx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta_0) + rz*cos(theta_0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_thetan2-fc"2))/(fc2-
r_thetan2));

psi_O=heading;

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

bg_0 = [0; O; 0];

% Inital State Vector

X_bar = [gq_0; bg_0];

% Initial Covariance Estimate

Px = diag([le-5*ones(1,4) le-3*ones(1,3)]);

%INS Initialization
% Position & Velocity Initialization

X _0 = N_sat;
y 0 = E_sat;
z 0 = D_sat;
vn_0 = speed*cos(CoG);

ve 0 = speed*sin(CoG);

vd_0 = Vd_sat;

% Accelerometer Initial Bias Estimate
ba 0 = [0; 0; 0];

163

% Initial State Vector

X _bar2 = [x 0; y 0; z 0; vn_0O; ve 0; vd 0; ba 0];

% Initial Covariance Estimate

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);

% AHRS SIGMA Weights Initialization

nx = length(x_bar);

nQ = length(diag(Qv));
nR = length(diag(R));
States

nxa = nx+nQ+nR;

States

n = nxat+2;
alpha = 1le-3;

Factor
beta = 2;
PDF

Wx0 = 1/3;

Wx = zeros(n,l);
% Simplex Weights

%
%
%
%

%
%

%

%
%

Number of AHRS States
Process Noise States
Measurement Noise
Total Augmented

Number of Iterations
Tunable Scaling

beta = 2 for Gaussian

Tunable, O<W<1
Pre-fill

for k = 1:n
if k ==
Wx(k) = WxO0;
else
Wx(k) = (1-Wx0)/(nxa+1l);
end
end
% Scaled Simplex Weights
for k = 1:n
if k ==
wx(k)= 1+(Wx(k)-1)/alpha™2;
else
wx(k) = Wx(k)/Zalpha™2;
end
end
% Incorporate prior PDF knowledge for Higher Order Moments
for k = 1:n
if k ==
wm(k) = wx(k);
wc(k) = wx(k)+(1l-alpha™2+beta);
else
wm(k) = wx(k);
we(k) = wx(k);
end
end

%Sigma Matrix
sig = zeros(nxa, n);

sig(1,1) = 0;
sig(1,2) = -1/sqrte(2*wx(2));
sig(1,3) = 1/sqrt(2*wx(2));
for j = 2:nxa

for

i =1:1
sig(.i) = 0;
end

164

X

0
0
0
0

XX

X

Pre-fill

Initialize (1,1)
Initialize (1,2)
Initialize (1,3)

for i = 2:j+1
sig(d,1) = -1/sqre*g+1)*wx(2));
end
for i = J+2:j+2
sigd,i) = j/sart*g+1)*wx(2));
end
end

% INS SIGMA Weights Initialization

nx2 = length(x_bar2); % Number of INS States
nQ2 = length(diag(Qv2)); % Process Noise States
nR2 = length(diag(R2)); % Measurement Noise
States
nxa2 = nx2+nQ2+nR2; % Total Augmented
States
n2 = nxa2+2; % Total Iterations
alpha = 1e-3; % Tunable, O<alpha<l
beta = 2; % beta = 2 for Gaussian
PDF
Wx02 = 1/3; % Tunable, O<W<1
Wx2 = zeros(n2,1); % Pre-fill
% Sigma Weights
for k = 1:n2

if k ==

Wx2(k) = Wx02;
else
Wx2(k) = (1-Wx02)/(nxa2+1);

end

end

% Scaled Sigma Weights

for k = 1:n2
if k ==
wx2(k)= 1+(Wx2(k)-1)/alpha”~2;
else
wx2(k) = Wx2(k)/alphan2;
end
end

% Incorporate prior PDF knowledge for Higher Order Moments
for k = 1:n2

if k ==
wm2(k) = wx2(k);
wc2(k) = wx2(k)+(1-alphan2+beta);
else
wm2(k) = wx2(k);
we2(k) = wx2(k);
end
end
% Sigma Matrix
sig2 = zeros(nxa2, n2); % Pre-fill
sig2(1,1) = 0; % Initialize (1,1)

165

sig2(1,2) = -1/sqrt(2*wx2(2)); % Initialize (1,2)
sig2(1,3) = 1/sqrt(2*wx2(2)); % Initialize (1,3)
for j = 2:nxa2
for i = 1:1
sig2(.,i) = 0;
end
for 1 = 2:j+1
sig2(j,i) = -1/sqrt(*g+1)*wx2(2));
end
for 1 = jJ+2:j+2
sig2(g, i) = J/sqrtg*(+1)*wx2(2));
end
end
end

%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Pxa = [Px zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nkR,nQ) R];

% Build n+2 Sigma Vectors
for k = 1:n

X(:,k) = xa + Pxa*sig(:,k);
end

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k = 1:n

% Gyro Model w_bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,k); g-X(6,k)-X(9,k); r-X(7, k)-X(10,k)1;

if SIM ==

% No Sidereal Rate

w_bt = w_bi_b;
else

% Sidereal Rate Included

R t2b = rot_t2b(X(1:4,k));

w_bt = w_bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion Update
wl = w bt(1); w2 = w_bt(2); w3 = w_bt(3);
Q _kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;
w2, -w3, o, wl;
w3, w2, -wl, 01*X(1:4, k);

166

% Quaternion Normalization
Q kpl n = Q kpl/sgrt(Q_kpl~*Q kpl);

% Gyro Bias Update
if SIM ==
% Constant Bias
bg = X(6:7,K);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,kK);
end

% Rebuild the State Vector for Each Iteration
Xx(:,k) = [Q_kpl_n; bg];

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(k)*Xx(:,k);
end

% Calculate Error Covariance
Px= zeros(nx, nx);
for k = 1:n
Px = Px + we(K)*((Xx(:,k) - x_bar)*(Xx(:,k) - x_bar)?);
end

% Non-Linear Measurement Process Equations

Y = zeros(nR, n); % Pre-fill
y bar = zeros(nR,1); % Pre-fill
Heading = zeros(1,n); % Pre-fill
ifT isempty(H1)
H1 = zeros(1,n); % Pre-Fill
H2 = zeros(1,n); % Pre-fill
Heading0 = zeros(1,n); % Pre-fill
ii = zeros(1,n); % Pre-fill
end
for k = 1:n
if SIM==1
noise_ R = X(11:13,k);
else
noise_ R = X(14:16,k);
end

% Quaternion to Euler Angles

q0 = Xx(1,k); g1 = Xx(2,k); g2 = Xx(3,k); g3 = Xx(4,Kk);

phi = atan2(2*(g2*q3+g0*ql), g0"2-ql"2-q272+g3™2) + noise_R(1);
theta = asin(-2*(gl1*q3-q0*qg2))+ noise_R(2);

psi = mod(atan2(2*(ql*q2+q0*q3), q0"2+ql"2-g272-q3°2)+ noise_R(3),
2*pi);

% Unwrap Heading Angle From [0, 2*pi] Range to Avoid Jumps

ifnn==1
H1(k) = psi;

167

Heading0(k) = H1(k);
Heading(k) = H1(k);
else
H2(k) = psi;
if (H2(k)-H1(k)) <= -100*pi/180
(k) = iik)+1;
end
if (H2(k)-H1(k)) >= 100*pi/180
(k) = i1i1(k)-1;
end
Heading(k) = HeadingO(k)+((H2(k)+2*pi*ii(k)) - Heading0(k));
H1(k) = H2(k);
end

% Calculated Observations
Y(:,k)=[phi; theta; Heading(k)];

% Calculated Observation Mean
y bar =y bar + wm(k)*Y(:,k);
end

% Estimated Observation Covariance
Py = zeros(nR,nR);
for k = 1:n
Py = Py + we(K)*((Y(:,k) - y_ban)*(Y(:,k) - y_bar)”);
end

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:n
Pxy = Pxy + wc(kK)*((Xx(:,k) - x_bar)*(Y(:,k) - y_bar)’);
end

% Measurement Method 1 (Accelerometer-GPS-Compass Fusion)
% Rotate GPS XYZ Acceleration about Heading

rx = ax_gps*cos(heading)+ay_gps*sin(heading);
ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-g;

% Computer Pitch

theta = atan((-rx*rz - fx*sqrt(rx"2+rz"2-tx"2)) / (fx"2-rz"2));
% Compute Roll

r_theta = rx*sin(theta) + rz*cos(theta);

fc = fy-(norm(x_bar2(4:6)))*r; % Added Coriolis Term

phi = atan((r_theta*ry + fc*sqrt(ry”2+r_theta™2-fc"2)) / (fc"2-
r_thetan2));

% Heading Unwrap from [0, 2*pi]

ifnn==1
heading;
0;

168

h
4-H3) <= -100*pi/180
J =1+l

if (H4-H3) >= 100*pi/180
= 3J-1;
end
psi_m = psiO+((H4+2*pi*jj) - psiO);
H3 = H4;
end

% Measurement Vector
Z = [phi; theta; psi_m];

% Kalman Filter Equations
K = Pxy/Py; % Kalman Gain
X_bar = x_bar + K*(Z - y_bar); % Kalman Correction

% Covariance Corrections
Px = Px - K*Py*K”;

nn = 2;
%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Pxa2 = [Px2 zeros(nx2,nQ2) zeros(nhx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct n+2 SIGMA Vectors
for k = 1:n2

X(:,k) = xa + Pxa2*sig2(:,k);
end

% Time Update

Xx = zeros(nx2, n2); % Pre-fill
X_bar2 = zeros(nx2, 1); % Pre-fill
for k = 1:n2

% Rotation Matrix
R_t2b = rot_t2b(x_bar(1:4));
R_b2t = R_t2b”;

% Position Update
P_kpl = X(1:3,k) + dt*[X(4:5,k); -X(6,K)];

% Velocity and Bias Update
if SIM ==
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...

169

X(10:12, k)) + [0; O; gD);
ba kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; 0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(lat0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);
end

% States
Xx(:,k) = [P_kpl; V_kpl; ba_kpl];

% Calculated Mean
X _bar2 = x_bar2 + wm2(k)*Xx(:,k);
end

% Predicted Error Covariance
Px2= zeros(nx2, nx2);
for k = 1:n2
Px2 = Px2 + we2(K)*((Xx(:,k) - x bar2)*(Xx(:,k) - x _bar2)?);
end

% Measurement Equations

Y = zeros(nR2, n2); % Pre-fill
y _bar = zeros(nR2,1); % Pre-fill
for k = 1:n2

if SIM ==

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(13:18,k);
else

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(16:21,k);
end

% Calculated Observation Mean
y _bar = y bar + wm2(k)*Y(:,k);
end

% Estimated Observation Covariance
Py = zeros(nR2,nR2);
for k = 1:n2
Py = Py + we2(k)*((Y(:,k) - y_bar)*(Y(:,k) - y_bar)’);
end

% Estimated Cross Covariance
Pxy = zeros(nx2,nR2);
for k = 1:n2
Pxy = Pxy + wc2(K)*((Xx(:,k) - x bar2)*(Y(:,k) - y bar)?);
end

% Measurements
Z = [N_sat; E _sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

170

% Kalman Filter Equations

K = Pxy/Py; % Kalman Gain
% Kalman State Corrections

X_bar2 = x _ bar2 + K*(Z - y bar);

% Covariance Correction

Px2 = Px2 - K*Py*K~”;

X_HAT = [x bar(1:4); x_bar2(1:6); x_bar(5:7); x _bar2(7:9)];
end
kk=kk+1;

end

function R_t2b = rot_t2b(x)

g0 = x(1); gl = x(2); 92 = x(3); a3 = x(4);

R_t2b = [q0"2+qln™2-g272-q372 2*(ql*q2+q0*g3) 2*(ql*q3-q0*g2);
2*(gq2*q1l-q0*q3) q0"2-qlnN2+g272-g3°2 2*(g2*q3+q0*ql);
2*(g3*q1+q0*g2) 2*(g3*q2-q0*gl) gO™2-ql1"2-q2/°2+q3"2];

end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R_phi [1 O O0; O cos(phi) sin(phi); O -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
g2=(R_n2b(3,1)-R_n2b(1,3))/(4*q0);
q3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [g0; qgl1; 92; q3];
end

2. Measurement Model Two Implementation

function X HAT = SSUKF2(u)

%% SPHERICAL SIMPLEX UNSCENTED KALMAN FILTER
% Measurement Model 2

% LT Steven Terjesen

4 September 2014

X

% This estimator is built for use in MATLAB Simulink. There are 39
inputs

% required and can be run in Simulink with an “Interpolated MATLAB
% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

171

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through

35

% are the Process Noise and Measurement Noise diagonal elements. These

XX

a

X

%% System Inputs

% Measurement inputs

CoG = u(1);

speed = u(2);

x = u(3); fy = u4); fz

P=u(®); qg=u(@; r=u(d;
N_sat = u(9); E_sat = u(10); D_sat

heading = u(12);
Vd_sat = u(13);

% Process and Measurement Noise Matrices

R = diag(u(14:17));
R2 = diag(u(18:23));

SIM = u(39);
SEAFOXI1(2)
%

if SIM ==

Qv = diag(u(24:26));
Condor

Qv2 = diag(u(30:32));
Condor
else

Qv = diag(u(24:29));
SEAFOX

Qv2 = diag(u(30:35));
SEAFOX

Vd_sat = 0;
%
on
%
D_sat = O;
Measurement
%
set
%
end

% GPS Accelerations
ax_gps = u(36); ay _gps =

%% Initialization

u(37); az_gps

% elements are not hard coded to allow for easier tuning. Inputs 36
% through 38 are the N-E-D accelerations in the LTP frame. Input 39 is

» toggle for selecting whether the data is from Condor or SEAFOX 11.

%GPS Course Over Ground
%GPS Speed Over Ground
%IMU Accelerations

%IMU Angular Rates

%GPS Position (NED)
%GPS Heading

%GPS LTP Down Velocity

%AHRS Measurement Noise
%INS Measurement Noise

%Condor (1) or

Simulation Selector

%AHRS Process Noise

%INS Process Noise

%AHRS Process Noise
%INS Process Noise

%No Vertical Velocity
measurement available

SEAFOX 11, set Vd=0.
%No Altitude

available on SEAFOXII,

D sat = 0;

%GPS Accelerations as
% calculated from 3rd
% Order Filter

persistent x_bar HeadingO0 H1 H2 i1 jj psiO H3 H4 ...

Px Px2 kk dt g nn nx nxa nQ nR n wc wm X bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 sig sig2 wei latO

% Allows time for Condor To steady out during live testing
if isempty(kk)
kk = 0;
end
if kk < 1 & SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wel = 7.292115*10"-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %Origin of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

% AHRS Initialization

% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);

rz = az_gps-9;

theta 0 = atan((-rx*rz - Xx*sqrt(rx"2+rz"2-fx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta _0) + rz*cos(theta 0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_theta”2-fc"2))/(fc2-
r_thetan2));

psi_O=heading;

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

bg_0 = [0; O; 0];

% Inital State Vector

X_bar = [g_0; bg 0];

% Initial Covariance Estimate

Px = diag([1le-5*ones(1,4) le-3*ones(1,3)]):;

%INS Initialization
% Position & Velocity Initialization

X_0 = N_sat;

y 0 = E_sat;

z 0 = D_sat;

vn_0 = speed*cos(CoG);
ve 0 = speed*sin(CoG);
vd_0 = Vd_sat;

% Accelerometer Initial Bias Estimate

ba 0 = [0; 0; 0];

% Initial State Vector

X_bar2 = [x _0; y 0; z 0; vn_O; ve 0; vd 0; ba_0];

173

% Initial Covariance Estimate

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]):;

% AHRS SIGMA Weights Initialization

nx = length(x_bar);

nQ = length(diag(Qv));
nR = length(diag(R));
States

nxa = nx+nQ+nR;

States

n = nxa+2;
alpha = 1le-3;

Factor
beta = 2;
PDF

Wx0 = 1/3;

Wx = zeros(n,l);
% Simplex Weights

%
%
%
%

%
%

%

%
%

Number of AHRS States
Process Noise States
Measurement Noise
Total Augmented

Number of Iterations
Tunable Scaleing

beta = 2 for Gaussian

Tunable, O<W<1
Pre-fill

for k = 1:n
if k ==
Wx(k) = Wx0;
else
Wx(k) = (1-Wx0)/(nxa+l);
end
end
% Scaled Simplex Weights
for k = 1:n
if k ==
wx(k)= 1+(Wx(k)-1)/alphan2;
else
wx(k) = Wx(k)/alphan2;
end
end
% Incorperate prior PDF knowledge for Higher Order Moments
for k = 1:n
if k ==
wm(k) = wx(k);
wc(k) = wx(k)+(1-alphan2+beta);
else
wm(k) = wx(k);
wc(k) = wx(k);
end
end

%Sigma Matrix
sig = zeros(nxa, h);

sig(1,2) - -1/sqrte(2*wx(2));

sig(1,3) 1/sqre(2*wx(2));
for j = 2:nxa
for i = 1:1
sig(d.,i) = 0;
end
for 1 = 2:j+1
sig.i1) = -1/sart*J+1)*wx(2));

174

X

0
0
0
0

XXX

Pre-fill

Initialize (1,1)
Initialize (1,2)
Initialize (1,3)

2
J/sare(g*g+1)*wx(2));

% INS SIGMA Weights Initialization

nx2 = length(x_bar2); % Number of INS States
nQ2 = length(diag(Qv2)); % Process Noise States
nR2 = length(diag(R2)); % Measurement Noise
States
nxa2 = nx2+nQ2+nR2; % Total Augmented
States
n2 = nxa2+2; % Total Iterations
alpha = 1le-3; % Tunable, O<alpha<l
beta = 2; % beta = 2 for Gaussian
PDF
Wx02 = 1/3; % Tunable, O<W<1
Wx2 = zeros(n2,1); % Pre-fill
% Sigma Weights
for k = 1:n2

if k ==

Wx2(k) = Wx02;
else
Wx2(k) = (1-Wx02)/(nxa2+1);

end

end

% Scaled Sigma Weights

for k = 1:n2
if k ==
wx2(k)= 1+(Wx2(k)-1)/alphan2;
else
wx2(k) = Wx2(k)/alphan2;
end
end

% Incorperate prior PDF knowledge for Higher Order Moments
for k = 1:n2

if k ==

wm2(k) = wx2(k);

wc2(k) = wx2(k)+(1-alphan2+beta);
else

wm2(k) = wx2(k);

wec2(k) = wx2(k);
end

end

% Sigma Matrix
sig2 = zeros(nxa2, n2);

X

v Pre-Fill

sig2(1,1) = 0; %
sig2(1,2) = -1/sqrt(2*wx2(2)); %
sig2(1,3) = 1/sqrte(2*wx2(2)); %

175

v Initialize (1,1)
v Initialize (1,2)
v Initialize (1,3)

for j = 2:nxa2

for 1 = 1:1
sig2(jJ,i) =0
end
for 1 = 2:j+1
sig2(jJ,i) = -1/sqrt(*g+1)*wx2(2));
end
for i = J+2:j+2
sig2(g,i) = j/sareg*g+1)*wx2(2));
end
end
end

%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Pxa = [Px zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nR,nQ) R];

% Build n+2 Sigma Vectors
for k = 1:n

X(:,k) = xa + Pxa’*sig(:,k);
end

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k 1:n

% Gyro Model w_bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,k); gq-X(6,k)-X(9,k); r-X(7, k)-X(10,k)];

if SIM == 1

% No Sidereal Rate

w_bt = w_bi_b;
else

% Sidereal Rate Included

R_t2b = rot_t2b(X(1:4,k));

w_bt = w_bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion Update
wl = w bt(l); w2 = w_bt(2); w3 = w_bt(3);
Q kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;
w2, -w3, o, wl;
w3, w2, -wl, 01*X(1:4, k);

% Quaternion Normalization

176

Q kpl n = Q kpl/sgrt(Q_kpl”*Q kpl);

% Gyro Bias Update
if SIM == 1
% Constant Bias
bg = X(6:7,k);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,k);
end

% Rebuild the State Vector for Each Iteration
Xx(:,k) = [Q_kpl_n; bg];

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(k)*Xx(:,k);
end

% Calculate Error Covariance
Px= zeros(nx, nx);
for k = 1:n
Px = Px + we(K)*((Xx(:,k) - x bar)*(Xx(:,k) - x_bar)?);
end

% Non-Linear Measurement Process Equations

Y = zeros(nR, n); % Pre-fill
y_bar = zeros(nR,1); % Pre-fill
Heading = zeros(1,n); % Pre-fill
it isempty(H1)
H1 = zeros(1,n); % Pre-fill
H2 = zeros(1,n); % Pre-fill
Heading0 = zeros(1l,n); % Pre-fill
ii = zeros(1,n); % Pre-fill
end
for k = 1:n

% Rotation Matrix (LTP to Body)
R _t2b = rot_t2b(Xx(1:4,k));
% Gyro Measurements
w_bi = [p; g; r] - Xx(5:7,k);
if SIM ==

noise_ R = X(11:14,k);

w_bt = w_bi;
else

noise_R = X(14:17,k);

w_bt = w_bi - R _t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion to Euler Angles

q0 = Xx(1,k); g1 = Xx(2,k); g2 = Xx(3,Kk); g3 = Xx(4,Kk);

psi = mod(atan2(2*(ql*q2+q0*q3), q0"2+qln2-g272-q3°2)+ noise_R(4),
2*pi);

% Unwrap Heading Angle From [0, 2*pi] Range to Aviod Jumps

if nn ==

177

H1(k) = psi;
Heading0(k) = H1(k);
Heading(k) = H1(k);
else
H2(k) = psi;
iT (H2(k)-H1(k)) <= -100*pi/180
(k) = i1i(k)+1;
end
if (H2(k)-H1(k)) >= 100*pi/180
k) = iik)-1
end
Heading(k) = HeadingO0(k)+((H2(k)+2*pi*i1i(k)) - Heading0(k));
H1(k) = H2(k);
end

% Accelerometer Estimate
FB_hat = R_t2b*[ax_gps; ay_gps; az_gps] + ---
cross(w bt, R_t2b*x bar2(4:6)) - ..
R_t2b*[0; 0; g]-x _bar2(7:9)-noise R(1 3);

% Calculated Observations
Y(:,k)=[FB_hat; Heading(k)];

% Calculated Observation Mean
y bar = y bar + wm(k)*Y(:,k);
end

% Estimated Observation Covariance
Py = zeros(nR,nR);
for k = 1:
Py = Py + we(k)*((Y(:,k) - y_bar)*(Y(:,k) - y_bar)”);
end

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:n
Pxy = Pxy + wc(kK)*((Xx(:,k) - x_bar)*(Y(:,k) - y bar)?);
end

% Measurement Method 2 (Accelerometer)

% Heading Unwrap from [0, 2*pi]
ifnn==1
H3 = heading;

else
= heading;
if (H4-H3) <= -100*pi/180
13 = 1i+1;
end
if (H4-H3) >= 100*pi/180

178

JJ =11-1;
end
psi_m = psiO+((H4+2*pi*jj) - psiO);
H3 = H4;
end

% Measurement Vector
Z = [fx; Ffy; fz; psi_m];

% Kalman Filter Equations
K = Pxy/Py; % Kalman Gain
X_bar = x_bar + K*(Z - y_bar); % Kalman Correction

% Covariance Corrections
Px = Px - K*Py*K”;

nn = 2;
%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Pxa2 = [Px2 zeros(nx2,nQ2) zeros(nhx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct n+2 SIGMA Vectors
for k = 1:n2

X(:,k) = xa + Pxa2’*sig2(:,k);
end

% Time Update

Xx = zeros(nx2, n2); % Pre-fill
X_bar2 = zeros(nx2, 1); % Pre-fill
for k = 1:n2

% Rotation Matrix
R_t2b = rot_t2b(x_bar(1:4));
R_b2t = R_t2b”;

% Position Update
P_kpl = X(1:3,k) + dt*[X(4:5,k); -X(6,K)];

% Velocity and Bias Update
if SIM ==
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; O; gD);
ba kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...

179

X(10:12, k)) + [0; 0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(lat0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);

end

% States
Xx(:,k) = [P_kpl; V_kpl; ba_kpl];

% Calculated Mean

X_

bar2 = x_bar2 + wm2(k)*Xx(:,k);

end

%

Predicted Error Covariance

Px2= zeros(nx2, nx2);
for k = 1:n2

Px2 = Px2 + we2(K)*((Xx(:,k) - x bar2)*(Xx(:,k) - x _bar2)?);

end

%
Y

y_
for k

Measurement Equations

= zeros(nR2, n2); % Pre-fill
bar zeros(nR2,1); % Pre-fill
1:n2

it SIM ==

% Calculated Observations
Y(:,k)=Xx(1:6,k)+X(13:18,k);

else

% Calculated Observations
Y(:,k)=Xx(1:6,k)+X(16:21,k);

end

%

y_

Calculated Observation Mean
bar = y bar + wm2(k)*Y(:,k);

end

%

Estimated Observation Covariance

Py = zeros(nR2,nR2);
for k = 1:n2

Py = Py + we2(k)*((Y(:,k) - y_bar)*(Y(:,k) - y_bar)”);

end

%

Estimated Cross Covariance

Pxy = zeros(nx2,nR2);

for k = 1:n2
Pxy = Pxy + wc2(K)*((Xx(:,k) - x bar2)*(Y(:,k) - y bar)?);
end
% Measurements
Z = [N_sat; E_sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

X

0

=

0

Kalman Filter Equations
= Pxy/Py; % Kalman Gain
Kalman State Corrections

180

X_bar2 = x _bar2 + K*(Z - y bar);
% Covariance Correction
Px2 = Px2 - K*Py*K~”;

X_HAT = [x _bar(1:4); x_bar2(1:6); x_bar(5:7); x bar2(7:9)];
end

kk=kk+1;

end

function R_t2b = rot_t2b(Xx)

g0 = x(1); gl = x(2); 92 = x(3); g3 = x(4);

R_t2b = [q0"2+qln™2-g272-q37°2 2*(ql*q2+q0*q3) 2*(ql*q3-q0*qg2);
2*(gq2*ql-q0*qg3) q0"2-ql"™2+g272-g3°2 2*(g2*q3+q0*ql);
2*(gq3*ql+q0*g2) 2*(g3*g2-q0*gql) qO0N2-ql"N2-g272+q3°2];

end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R _phi = [1 0 0; 0 cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
q2=(R_n2b(3,1)-R _n2b(1,3))/(4*q0);
g3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [g0; 9gi1; d2; q3]:
end

F. SQUARE ROOT SPHERICAL SIMPLEX UNSCENTED KALMAN
FILTER MATLAB CODE

1. Measurement Model One Implementation

function X _HAT = SRSSUKF1(u)

%% SQUARE ROOOT SPHERICAL SIMPLEX UNSCENTED KALMAN FILTER
4 Measurement Model 1

% LT Steven Terjesen

% September 2014

X

% This estimator is built for use in MATLAB Simulink. There are 38
inputs

% required and can be run in Simulink with an “Interpolated MATLAB
% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

181

% Vertical Velocity (zeroed out for SEAFOXI1I data).

34

Inputs 14 through

% are the Process Noise and Measurement Noise diagonal elements. These

XX

a

X

%% System Inputs

% Measurement inputs

CoG = u(1);

speed = u(2);

x =u(3); fy = u(4); fz = u(d);
p=u(6); q=u(@; r =u(®;

N_sat = u(9); E_sat = u(1l0); D_sat =
heading = u(12);

Vd_sat = u(13);

% Process and Measurement Noise Matrices
R = chol(diag(u(14:16)));
R2 = chol(diag(u(17:22)));

SIM = u(38);
SEAFOXI1(2)

if SIM ==

Qv =
Condor

Qv2 = chol(diag(u(29:31)));
Condor
else

Qv =
SEAFOX

Qv2 = chol(diag(u(29:34)));
SEAFOX

Vd_sat = 0;

chol (diag(u(23:25)));

chol (diag(u(23:28)));

%

on

%

D _sat = 0;

Measurement

%

set

%

end

% GPS Accelerations

ax_gps = u(35); ay gps = u(36); az_gps =

%% Initialization

t» elements are not hard coded to allow for easier tuning.
4 through 37 are the N-E-D accelerations in the LTP frame.

u(1l);

u(37);

Inputs 35
Input 38 is

» toggle for selecting whether the data is from Condor or SEAFOX 11.

%GPS
%GPS
%IMU
%IMU
%GPS
%GPS
%GPS

Course Over Ground
Speed Over Ground
Accelerations
Angular Rates
Position (NED)
Heading

LTP Down Velocity

%AHRS Measurement Noise
%INS Measurement Noise

%Condor (1) or

%AHRS Process Noise

%INS Process Noise

%AHRS Process Noise
%INS Process Noise

%No Vertical Velocity
measurement available

SEAFOX 11, set Vd=0.
%No Altitude

available on SEAFOXII,
D sat = 0;

%GPS Accelerations as
% calculated from 3rd
% Order Filter

persistent x_bar Heading0 H1 H2 i1 jj psiO H3 H4 ...

182

Sx Sx2 kk dt g nn nx nxa nQ nR n wc wm X _bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 sig sig2 wei latO

% Allows time for Condor To steady out during live testing
if isempty(kk)
kk = 0;
end
if kk < 1 & SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wel = 7.292115*10"-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %0riging of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

% AHRS Initialization

% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);
ry = -ax_gps*sin(heading)+ay_gps*cos(heading);
rz = az_gps-9;

theta 0 = atan((-rx*rz - Xx*sqrt(rx"2+rz"2-fx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta _0) + rz*cos(theta 0);
fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_theta”2-fc"2))/(fc2-
r_thetan2));

psi_O=heading;

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

bg_0 = [0; O; 0];

% Inital State Vector

X_bar = [g_0; bg 0];

% Initial Covariance Estimate

Px = diag([le-6*ones(1,4) le-3*ones(1,3)]):;

% Inital Matrix Square Root

Sx = chol(Px);

%INS Initialization
% Position & Velocity Initialization

X _0 = N_sat;
y 0 = E_sat;
z 0 = D_sat;
vn_0 = speed*cos(CoG);

ve 0 = speed*sin(CoG);

vd_0 = Vd_sat;

% Accelerometer Initial Bias Estimate
ba 0 = [0; 0; 0];

183

% Initial State Vector

X _bar2 = [x 0; y 0; z 0; vn_0O; ve 0; vd 0; ba 0];

% Initial Covariance Estimate

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);

% Inital Matrix Square Root
Sx2 = chol(Px2);

% AHRS SIGMA Weights Initialization

nx = length(x_bar);

nQ = length(diag(Qv));
nR = length(diag(R));
States

nxa = nx+nQ+nR;

States

n = nxat+2;
alpha = 1e-3;

Factor
beta = 2;
PDF

Wx0 = 1/3;

Wx = zeros(n,1l);
% Simplex Weights

%
%
%
%

%
%

%

%
%

Number of AHRS States
Process Noise States
Measurement Noise
Total Augmented

Number of Iterations
Tunable Scaling

beta = 2 for Gaussian

Tunable, O<W<1
Pre-fill

for k = 1:n
if k ==
Wx(k) = Wx0;
else
Wx(k) = (1-Wx0)/(nxa+l);
end
end
% Scaled Simplex Weights
for k = 1:n
if k ==
wx (k)= 1+(Wx(k)-1)/alpha2;
else
wx(k) = Wx(k)/alphan2;
end
end
% Incorperate prior PDF knowledge for Higher Order Moments
for k = 1:n
if k ==
wm(k) = wx(k);
wc(k) = wx(k)+(1-alphan2+beta);
else
wm(k) = wx(k);
we(k) = wx(k);
end
end

%Sigma Matrix
sig = zeros(nxa, n);

sig(1,1) = 0;
sig(l1,2) = -1/sqrt(2*wx(2));
sig(1,3) = 1/sqrt(2*wx(2));
for j = 2:nxa

for i = 1:1

184

X

0
0
0
0

XXX

Pre-fill

Initialize (1,1)
Initialize (1,2)
Initialize (1,3)

end
for i = 2:j+1

sig(.,i1) = -1/sgreg*g+1)*wx(2));
end
for i = jJ+2:j+2

sigd., 1) = §/sareg*g+1)*wx(2));
end

end

% INS SIGMA Weights Initialization

nx2 = length(x_bar2);
nQ2 = length(diag(Qv2));
nR2 = length(diag(R2));
States

nxa2 = nx2+nQ2+nR2;
States

n2 = nxa2+2;
alpha = 1e-3;

beta = 2;
PDF
Wx02 = 1/3;

Wx2 = zeros(n2,1);

% Sigma Weights

for k = 1:n2
if k ==
Wx2(k) = Wx02;
else
Wx2(k) = (1-Wx02)/(nxa2+1);
end
end

% Scaled Sigma Weights
for k = 1:n2
if k ==
wx2(k)= 1+(Wx2(k)-1)/alphan2;
else
wx2(k) = Wx2(k)/alphan2;
end
end

%
%
%

%
%
%
%

%
%

Number of INS States
Process Noise States
Measurement Noise

Total Augmented

Total Ilterations
Tunable, O<alpha<l
beta = 2 for Gaussian

Tunable, O<W<1
Pre-fill

% Incorperate prior PDF knowledge for Higher Order Moments

for k = 1:n2
ifk==1
wm2(k) = wx2(k);
wc2(k) = wx2(k)+(1-alphan2+beta);
else
wm2(k) = wx2(k);
wec2(k) = wx2(k);
end
end

% Sigma Matrix

185

S

sig2 = zeros(nxa2, n2); 4 Pre-fill

sig2(1,1) = 0; % Initialize (1,1)
sig2(1,2) = -1/sqrt(2*wx2(2)); % Initialize (1,2)
sig2(1,3) = 1/sgrt(2*wx2(2)); % Initialize (1,3)
for j = 2:nxa2
for i = 1:1
sig2(j.i) = 0;
end
for i1 = 2:j+1
sig2(g,i1) = -1/sqre(*g+1)*wx2(2));
end
for i = J+2:j+2
sig2(g,i) = j/sqreg*g+1)*wx2(2));
end
end
end

%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Sxa = [Sx zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nR,nQ) R];

% Build n+2 Sigma Vectors
for k = 1:n

X(:,k) = xa + Sxa*sig(:,k);
end

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k 1:n

% Gyro Model w_bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,Kk); gq-X(6,k)-X(9,k); r-X(7, k)-X(10,k)];

if SIM ==

% No Sidereal Rate

w_bt = w_bi_b;
else

% Sidereal Rate Included

R _t2b = rot_t2b(X(1:4,k));

w_bt = w_bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion Update

wl = w bt(1); w2 = w _bt(2); w3 = w_bt(3);

Q kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;

186

w2, -w3, 0, wl;
w3, w2, -wl, 0]1*X(1:4, K);

% Quaternion Normalization
Q kpl n = Q kpl/sgrt(Q _kpl”*Q kpl);

% Gyro Bias Update
if SIM ==
% Constant Bias
bg = X(5:7,k);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,k);
end

% Rebuild the State Vector for Each Iteration
Xx(:,k) = [Q_kpl n; bg];

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(k)*Xx(:,k);
end

% Calculate Error Covariance

Ax = sqre(wc(2))*(Xx(:,2:n) - x _bar(:,ones(1,n-1)));

% QR Decomposision

[-, sx] = qr(Ax”,0);

% Cholesky Update (Downdate for negative zeroth weight)
Sx = cholupdate(sx, sqrt(-wc(1))*(Xx(:,1)-x_bar), “-7);

% Non-Linear Measurement Process Equations

Y = zeros(nR, n); % Pre-Ffill
y _bar = zeros(nR,1); % Pre-fill
Heading = zeros(1,n); % Pre-fill
if isempty(Hl)
H1 = zeros(1,n); % Pre-fill
H2 = zeros(1,n); % Pre-Fill
Heading0 = zeros(l,n); % Pre-fill
ii = zeros(1,n); % Pre-fill
end
for k = 1:n
if SIM==1
noise_R = X(11:13,k);
else
noise R = X(14:16,k);
end

% Quaternion to Euler Angles

q0 = Xx(1,Kk); g1 = Xx(2,k); g2 = Xx(3,k); g3 = Xx(4,K);

phi = atan2(2*(g2*g3+g0*ql), q0"2-gi”2-g272+q3~2) + noise_R(1);
theta = asin(-2*(gl1*g3-q0*g2))+ noise_R(2);

psi = mod((atan2(2*(gl1*q2+q0*g3), q0"2+ql~™2-g272-g3°2))+ noise_R(3),
2*pi);

187

% Unwrap Heading Angle From [0, 2*pi] Range to Aviod Jumps
if nn ==
H1(k) = psi;
Heading0(k) = H1(k);
Heading(k) = H1(k);
else
H2(k) = psi;
if (H2(k)-H1(k)) <= -100*pi/180
(k) = 1i(k)+1;
end
if (H2(k)-H1(k)) >= 100*pi/180
ik = i1ik)-1;
end
Heading(k) = HeadingO0(k)+((H2(k)+2*pi*i1i(k)) - Heading0(k));
H1(k) = H2(k);
end

% Calculated Observations
Y(:,k)=[phi; theta; Heading(k)];

% Calculated Observation Mean
y _bar = y bar + wn(k)*Y(:,k);
end

% Estimated Observation Covariance

Bx = sqrt(wc(2))*(Y(:,2:n) - y bar(:,ones(1,n-1)));

% QR Decomposition

[~., syl = qr(Bx”,0); % **”’qr” PRODUCES UPPER TRIANGULAR MATRIX**
% Cholesky Update (or Downdate)

Sy = cholupdate(sy, sqrt(-wc(D))*(Y(:,1)-y bar), “-7);

% ***Sy MUST BE LOWER TRIANGULAR***

Sy = Sy’;

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:n
Pxy = Pxy + wc(K)*((Xx(:,k) - x_bar)*(Y(:,k) - y bar)?);
end

% Measurement Method 1 (Accelerometer-GPS-Compass Fusion)

% Rotate GPS XYZ Acceration about Heading

rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);

rz = az_gps-9;

% Computer Pitch

theta = atan((-rx*rz - fx*sqrt(rx"2+rz"2-tx"2)) / (fx"2-rz"2));
% Compute Roll

r_theta = rx*sin(theta) + rz*cos(theta);

fc = fy-(norm(x_bar2(4:6)))*r; % Added Coriolis Term

phi = atan((r_theta*ry + fc*sqrt(ry"2+r_theta™2-fc"2)) / (fc"2-
r_thetan2));

% Heading Unwrap from [0, 2*pi]
ifnn==1

188

H3 heading;
H4 = O;
psiO = H3;
psi_m = H3;
13=0;

else
H4 = heading;

1
[
\—

+

=

1]
end

if (H4-H3) >= 100*pi/180
i =11-1;
end
psi_m = psiO+((H4+2*pi*jj) - psiO);
H3 = H4;
end

% Measurement Vector
Z = [phi; theta; psi_m];

% Kalman Filter Equations
K = (Pxy/Sy*)/Sy; % Efficient Least
Squares

X_bar = x_bar + K*(Z - y_bar);

=4

» Kalman Correction

% Covariance Corrections
Ux = K*Sy;
for k = 1:nR
Sx = cholupdate(Sx, Ux(:,k), “-7);
end
SX = SxX7;
TRIANGULAR

S

% Cholesky Downdate

X

% MUST BE LOWER

nn = 2;
%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nhxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Sxa2 = [Sx2 zeros(hx2,nQ2) zeros(nx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct n+2 SIGMA Vectors
for k = 1:n2

X(:,k) = xa + Sxa2*sig2(:,k);
end

% Time Update

Xx = zeros(hx2, n2); % Pre-fill
X_bar2 = zeros(nx2, 1); % Pre-fill
for k = 1:n2

189

% Rotation Matrix
R_t2b = rot_t2b(x_bar(1:4));
R_ b2t = R_t2b”;

% Posittion Update
P_kpl = X(1:3,k) + dt*[X(4:5,k); -X(6,K)];

% Velocity and Bias Update
if SIM == 1
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; O; gD);
ba kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; 0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(lat0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);
end

% States
Xx(:,k) = [P_kpl; V_kpl; ba_kpl];

% Calculated Mean
X _bar2 = x_bar2 + wm2(k)*Xx(:,k);
end

% Predicted Error Covariance

Ax = sqrt(wc2(2))*(Xx(:,2:n2) - x _bar2(:,ones(1,n2-1)));

% QR Decomposition

[~, Sx2] = qr(Ax*,0);

% Cholesky Factor Update

Sx2 = cholupdate(Sx2, sgrt(-wc2(1))*(Xx(:,1)-x_bar2), “-7);

% Measurement Equations

Y = zeros(nR2, n2); % Pre-fill
y_bar = zeros(nR2,1); % Pre-fill
for k = 1:n2

if SIM ==

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(13:18,k);
else

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(16:21,k);
end

% Calculated Observation Mean
y bar = y bar + wm2(k)*Y(:,k);
end

% Estimated Observation Covariance
Bx = sqrt(wc2(2))*(Y(:,2:n2) - y bar(:,ones(1,n2-1)));

190

% QR Decomposition

[~. Syl = ar(Bx”,0);

% Cholesky Factor Update

Sy = cholupdate(Sy, sqrt(-wc2(1))*(Y(:,1)-y _bar), “-7);
% Make Sy Lower Triangular

Sy = Sy’;

% Estimated Cross Covariance
Pxy = zeros(nx2,nR2);
for k = 1:n2
Pxy = Pxy + wc2(kK)*((Xx(:,k) - x bar2)*(Y(:,k) - y_bar)’);
end

% Measurements
Z = [N_sat; E _sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

X

o Kalman Filter Equations

% Kalman Gain w/ Efficient Least Squares
K = (Pxy/Sy’)/Sy;

¢ Kalman State Corrections

X_bar2 = x _ bar2 + K*(Z - y bar);

% Covariance Correction

Ux = K*Sy;

for k = 1:nR2

Sx2 = cholupdate(Sx2, Ux(:,k), “-7);

X

end
% Make Sx2 Lower Right Trangular
Sx2 = Sx27;

X_HAT = [x bar(1:4); x_bar2(1:6); x_bar(5:7); x _bar2(7:9)];
end

kk=kk+1;

end

function R_t2b = rot_t2b(x)

q0 = x(1); ql = x(2); 92 = x(3); 93 = x(4);

R_t2b = [q0O™N2+qlnM2-g272-g3°2 2*(ql*q2+q0*g3) 2*(ql*q3-q0*g2);
2*(gq2*q1l-q0*q3) q0"2-qlnN2+g272-g3°2 2*(g2*q3+q0*ql);
2*(gq3*ql+q0*g2) 2*(g3*q2-q0*ql) q0N2-ql"2-g272+q3°2];

end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R_theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R_phi = [1 0 0; O cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
g2=(R_n2b(3,1)-R_n2b(1,3))/(4*q0);
q3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

191

g = [g0; 9gl1; d2; q3];
end

2. Measurement Model Two Implementation

function X _HAT = SRSSUKF2(u)

%% SQUARE ROOOT SPHERICAL SIMPLEX UNSCENTED KALMAN FILTER
4 Measurement Model 2

% LT Steven Terjesen

% September 2014

X

% This estimator is built for use in MATLAB Simulink. There are 39
inputs

% required and can be run in Simulink with an “Interpolated MATLAB

% Function” block. The first 13 inputs are the vehicle data: Course
Over

% Ground, Speed Over Ground, Accelerometer Measurements, Gyro
Measurements,

% GPS Measurements (In LTP XNorth-YEast-ZDown), Heading Measurement,
and

% Vertical Velocity (zeroed out for SEAFOXII data). Inputs 14 through
35

% are the Process Noise and Measurement Noise diagonal elements. These
t elementes are not hard coded to allow for easier tuning. Inputs 36

» through 38 are the N-E-D accelerations in the LTP frame. Input 39 is
a

% toggle for selecting whether the data is from Condor or SEAFOX 11.

XX

=S4

%% System Inputs
% Measurement inputs

CoG = u(1); %GPS Course Over Ground
speed = u(2); %GPS Speed Over Ground
x = u(3); fy = u@); fz = u(b); %IMU Accelerations
p=u(®); qg=u(@); r =u(8); %IMU Angular Rates
N_sat = u(9); E_sat = u(10); D_sat = u(1ll); %GPS Position (NED)
heading = u(12); %GPS Heading
Vd_sat = u(13); %GPS LTP Down Velocity
% Process and Measurement Noise Matrices
R = chol(diag(u(14:17))); %AHRS Measurement Noise
R2 = chol(diag(u(18:23))); %INS Measurement Noise
SIM = u(39); %Condor (1) or
SEAFOXT1(2)
% Simulation Selector
if SIM ==

Qv = chol(diag(u(24:26))); %AHRS Process Noise
Condor

Qv2 = chol(diag(u(30:32))); %INS Process Noise
Condor
else

Qv = chol(diag(u(24:29))); %AHRS Process Noise
SEAFOX

192

Qv2 = chol(diag(u(30:35))); %INS Process Noise
SEAFOX

Vd_sat = 0; %No Vertical Velocity
% measurement available
on
% SEAFOX 11, set Vd=0.
D_sat = O; %No Altitude
Measurement
% available on SEAFOXII,
set
% D_sat = O;
end

% GPS Accelerations

ax_gps = u(36); ay gps = u(37); az_gps = u(38); UGPS Accelerations as
% calculated from 3rd
% Order Filter

%% Initialization
persistent x_bar Heading0 H1 H2 i1 jj psiO H3 H4 ...
Sx Sx2 kk dt g nn nx nxa nQ nR n wc wm X _bar2 nx2 nxa2 n2 nQ2 nR2 wc2

wm2 sig sig2 wei latO

% Allows time for Condor To steady out during live testing
if isempty(kk)
kk = 0;
end
if kk < 1 & SIM==1
X_HAT = zeros(16,1);
else

if isempty(x_bar)
% Miscellaneous

dt = 0.01; %Filter dt [sec]

g = 9.8; %Gravity Constant
[m/s"2]

wel = 7.292115*10"-5; %Sidereal Rate [rad/s]
latO= 0.639268394832413; %Origin of LTP [rad]
%lon0 = -2.115435878466264

nn=1; %Heading Count

Initializer

% AHRS Initialization

% Euler Angle Initialization

rx = ax_gps*cos(heading)+ay_gps*sin(heading);

ry = -ax_gps*sin(heading)+ay_gps*cos(heading);

rz = az_gps-9;

theta_0 = atan((-rx*rz - FTx*sqrt(rx"2+rz”"2-tx"2))/(fx"2-rz"2));
r_theta = rx*sin(theta_0) + rz*cos(theta 0);

fc = fy-speed*r;

phi_0 = atan((r_theta*ry + fc*sqrt(ry”™2+r_theta™2-fc"2))/(fc2-
r_thetan2));

psi_O=heading;

193

% Euler Angles to Quaternions

q_0 = e2q(phi_0, theta 0, psi_0);

% Gyro Bias Initial Values

% bg 0 = [2-4e-4; -le-4; 2e-4];

bg_0 = [0; O; 0];

% Inital State Vector

Xx_bar = [g_0; bg_0];

% Initial Covariance Estimate

Px = diag([1le-5*ones(1,4) le-3*ones(1,3)]):;
% Px = diag([le-5*ones(1,4) le-6*ones(1,3)]);
% Inital Matrix Square Root

Sx = chol(Px);

%INS Initialization
% Position & Velocity Initialization

x_0 = N_sat;

y 0 = E_sat;

z 0 = D_sat;

vn_0 = speed*cos(CoG);
ve_0 = speed*sin(CoG);
vd 0 = Vd_sat;

% Accelerometer Initial Bias Estimate

ba 0 = [0; 0; 0O];

% Initial State Vector

X_bar2 = [x 0; y 0; z_ 0; vn_O; ve_0; vd_0; ba_0];

% Initial Covariance Estimate

Px2 = diag([le-5*ones(1,3), le-5*ones(1,3), le-3*ones(1,3)]);
% Inital Matrix Square Root

Sx2 = chol(Px2);

% AHRS SIGMA Weights Initialization

nx = length(x_bar); % Number of AHRS States
nQ = length(diag(Qv)); % Process Noise States
nR = length(diag(R)); % Measurement Noise
States
nxa = nx+nQ+nR; % Total Augmented
States
n = nxat+2; % Number of Ilterations
alpha = 1e-3; % Tunable Scaleing
Factor
beta = 2; % beta = 2 for Gaussian
PDF
Wx0 = 1/3; % Tunable, O<W<1
Wx = zeros(n,1l); % Pre-fill
% Simplex Weights
for k = 1:n

if k ==

Wx(k) = WxO0;
else
Wx(k) = (1-Wx0)/(nxat+l);

end
end
% Scaled Simplex Weights
for k = 1:n

it k ==
194

wx(k)= 1+(Wx(k)-1)/alphan2;
else
wx(k) = Wx(k)/alphan2;

end
end
% Incorperate prior PDF knowledge for Higher
for k = 1:n
ifk==1
wm(k) = wx(k);
wc(k) = wx(k)+(1-alphan2+beta);
else
wm(k) = wx(k);
wc(k) = wx(k);
end
end

%Sigma Matrix
sig = zeros(nxa, n);

sig(1,1) = 0;
sig(1,2) = -1/sgrt(2*wx(2));
sig(1,3) = 1/sqrt(2*wx(2));
for j = 2:nxa
for i = 1:1
sig(d.,i) = 0;
end
for i = 2:j+1
sig(d, i) = -1/sqrtg*{d+1)*wx(2));
end
for i = jJ+2:j+2
sigd, 1) = §/sareg*g+1)*wx(2));
end

end

% INS SIGMA Weights Initialization

nx2 = length(x_bar2);
nQ2 = length(diag(Qv2));
nR2 = length(diag(R2));
States

nxa2 = nx2+nQ2+nR2;
States

n2 = nxa2+2;
alpha = 1le-3;

beta = 2;
PDF
Wx02 = 1/3;

Wx2 = zeros(n2,1);

% Sigma Weights

for k = 1:n2
if k ==
Wx2(k) = Wx02;
else
Wx2(k) = (1-Wx02)/(nxa2+1);
end
end

195

%
%
%
%

%
%
%

%
%
%
%

%
%

Order Moments

Pre-fill

Initialize (1,1)
Initialize (1,2)
Initialize (1,3)

Number of INS States
Process Noise States
Measurement Noise

Total Augmented

Total Iterations
Tunable, O<alpha<l
beta = 2 for Gaussian

Tunable, O<W<1
Pre-fill

% Scaled Sigma Weights
for k = 1:n2
it k ==
wx2(k)= 1+(Wx2(k)-1)/alphan2;
else
wx2(k) = Wx2(k)/alphan2;
end
end

% Incorperate prior PDF knowledge for Higher Order Moments

for k = 1:n2
ifk==1
wm2(k) = wx2(k);
wc2(k) = wx2(k)+(1-alpha™2+beta);
else
wm2(k) = wx2(k);
wec2(k) = wx2(k);
end
end

% Sigma Matrix
sig2 = zeros(nxa2, n2);

sig2(1,1) = 0;
sig2(1,2) = -1/sqrt(2*wx2(2));
sig2(1,3) = 1/sqrt(2*wx2(2));
for j = 2:nxa2
for i = 1:1
sig2(j,i) = 0;
end
for 1 = 2:j+1
sig2(j,i) = -1/sqrt(*g+1)*wx2(2));
end
for i = jJ+2:j+2
sig2(g,i) = J/sart(*g+1)*wx2(2));
end
end
end

%% AHRS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa, n);
xa = [x_bar; zeros(nxa-nx,1)];

% Build Augmented Covariance Matrix

Sxa = [Sx zeros(nx,nQ) zeros(nx,nR);
zeros(nQ,nx) Qv zeros(nQ,nR);
zeros(nR,nx) zeros(nkR,nQ) R];

% Build n+2 Sigma Vectors
for k = 1:n

X(:,k) = xa + Sxa*sig(:,k);
end

196

X

0
0
0
0

S ©

Pre-fill

Initialize (1,1)
Initialize (1,2)
Initialize (1,3)

% Time Update

Xx = zeros(nx, n);
X_bar = zeros(nx, 1);
for k = 1:n

% Gyro Model w _bi(true) = w_bi(measured) - bias - noise
w_bi_b = [p-X(5,k)-X(8,k); g-X(6,k)-X(9,k); r-X(7, k)-X(10,k)];

if SIM ==

% No Sidereal Rate

w_bt = w_bi_b;
else

% Sidereal Rate Included

R _t2b = rot_t2b(X(1:4,k));

w_bt = w_bi_b - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion Update
wl = w bt(1l); w2 = w _bt(2); w3 = w_bt(3);
Q_kpl = X(1:4, k) + (dt/2)*[0, -wl, -w2, -w3;
wl, O, w3, -w2;
w2, -w3, o, wl;
w3, w2, -wl, 0]1*X(1:4, K);

% Quaternion Normalization
Q kpl n = Q kpl/sgrt(Q_kpl~*Q_kpl);

% Gyro Bias Update
if SIM == 1
% Constant Bias
bg = X(5:7,k);
else
% Random Walk Bias
bg = X(5:7,k) + dt*X(11:13,Kk);
end

% Rebuild the State Vector for Each lteration
Xx(:,k) = [Q_kpl_n; bg];

% Calculated the Weighted Mean of the State Vector
X_bar = x_bar + wm(kK)*Xx(:z,Kk);
end

% Calculate Error Covariance

Ax = sgqrt(wc(@))*(Xx(:,2:n) - x _bar(:,ones(1,n-1)));

% QR Decomposision

[~, sx] = qr(Ax”,0);

% Cholesky Update (Downdate for negative zeroth weight)
Sx = cholupdate(sx, sqrt(-wc(1))*(Xx(:,1)-x_bar), “-7);

% Non-Linear Measurement Process Equations
Y = zeros(nR, n); % Pre-Fill

197

y_bar = zeros(nR,1); % Pre-fill

Heading = zeros(1,n); % Pre-fill
it isempty(H1l)
H1 = zeros(1,n); % Pre-fill
H2 = zeros(1,n); % Pre-Fill
Heading0 = zeros(l1,n); % Pre-fill
il = zeros(1,n); % Pre-fill
end
for k =

% Rotation Matrix (LTP to Body)
R_t2b = rot_t2b(Xx(1:4,k));

% Gyro Measurements

w_bi = [p; q; r] - Xx(5:7,K);

if SIM ==
noise_R = X(11:14,k);
w_bt = w_bi;

else

noise R = X(14:17,k);
w_bt = w_bi - R_t2b*[wei*cos(lat0); 0; -wei*sin(lat0)];
end

% Quaternion to Euler Angles
q0 = Xx(1,k); g1 = Xx(2,k); g2 = Xx(3,k); g3 = Xx(4,Kk);
psi = mod(atan2(2*(ql*q2+g0*qg3), q0"2+ql"2-q272-g3™2), 2*pi)+
noise_R(4);
% Unwrap Heading Angle From [0, 2*pi] Range to Aviod Jumps
if nn ==

H1(k) = psi;

Heading0(k) = H1(k);

Heading(k) = H1(k);
else

H2(k) = psi;

if (H2(k)-H1(k)) <= -100*pi/180

(k) = ii(k)+1;
end
if (H2(k)-H1(k)) >= 100*pi/180
k) = i1i(k)-1

end

Heading(k) = Heading0(k)+((H2(k)+2*pi*i1i(k)) - HeadingO0(k));

H1(k) = H2(k);
end

% Accelerometer Estimate
FB hat = R_t2b*[ax_gps; ay_gps; az gps] + ---
cross(w bt, R_t2b*x _bar2(4:6)) -
R_t2b*[0; 0; g]-x_bar2(7:9)-noise R(l 3);

% Calculated Observations
Y(:,k)=[FB_hat; Heading(k)];

% Calculated Observation Mean
y bar = y bar + wm(k)*Y(:,k);

198

end

% Estimated Observation Covariance

Bx = sqrt(wc(2))*(Y(:,2:n) - y bar(:,ones(1,n-1)));

% QR Decomposition

[~, syl = gr(Bx?,0); % **”qr” PRODUCES UPPER TRIANGULAR MATRIX**
% Cholesky Update (or Downdate)

Sy = cholupdate(sy, sqrt(-wc(1))*(Y(:,1)-y bar), “-7);

% ***Sy MUST BE LOWER TRIANGULAR***

Sy = 8y’;

% Estimated Cross Covariance
Pxy = zeros(nx,nR);
for k = 1:n
Pxy = Pxy + wc(k)*((Xx(:,k) - x_bar)*(Y(:,k) - y_bar)’);
end

% Measurement Method 2 (Accelerometer)

% Heading Unwrap from [0, 2*pi]
ifnh==1

H3 heading;

H4 = O;

psiO = H3;

psi_m = H3;

13=0;
else

H4 = heading;

if (H4-H3) <= -100*pi/180

end
if (H4-H3) >= 100*pi/180
JJ =11-1;
end
psi_m = psiO+((H4+2*pi*jj) - psiO);
H3 = H4;
end

% Measurement Vector
Z = [fx; Fy; fz; psi_m];

% Kalman Filter Equations
K = (Pxy/Sy*)/Sy; % Efficient Least
Squares

X_bar = x_bar + K*(Z - y_bar);

=4

» Kalman Correction

% Covariance Corrections

Ux = K*Sy;
for k = 1:nR

Sx = cholupdate(Sx, Ux(:,k), “-7); % Cholesky Downdate
end
SX = SXx7; % MUST BE LOWER
TRIANGULAR

199

nn = 2;
%% INS ESTIMATOR

% Build Augmented State Vector
X = zeros(nxa2, n2);
xa = [x_bar2; zeros(nxa2-nx2,1)];

% Build Augmented Covariance Matrix

Sxa2 = [Sx2 zeros(nx2,nQ2) zeros(nx2,nR2);
zeros(nQ2,nx2) Qv2 zeros(nQ2,nR2);
zeros(nR2,nx2) zeros(nR2,nQ2) R2];

% Construct n+2 SIGMA Vectors
for k = 1:n2

X(:,k) = xa + Sxa2*sig2(:,k);
end

% Time Update

Xx = zeros(nx2, n2); % Pre-fill
X_bar2 = zeros(nx2, 1); % Pre-fill
for k = 1:n2

% Rotation Matrix
R_t2b = rot_t2b(x_bar(1:4));
R_b2t = R_t2b”;

% Posittion Update
P_kpl = X(1:3,k) + dt*[X(4:5,k); -X(6,K)];

% Velocity and Bias Update
if SIM == 1
% No Sidereal
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; O; gD);
ba kpl = X(7:9,k);
else
% Sidereal Included
V_kpl = X(4:6,k) + dt*(R_b2t*([fx; fy; fz] - X(7:9,k) - ...
X(10:12, k)) + [0; 0; g] - 2*cross([wei*cos(lat0);
0; -wei*sin(lat0)], X(4:6,k)));
ba kpl = X(7:9,k) + dt*X(13:15,k);
end

% States
Xx(:,k) = [P_kpl; V_kpl; ba_kpl];

% Calculated Mean
X _bar2 = x_bar2 + wm2(k)*Xx(:,k);
end

% Predicted Error Covariance

Ax = sqrt(wc2(2))*(Xx(:,2:n2) - x _bar2(:,ones(1,n2-1)));
% QR Decomposition

[~, Sx2] = qr(Ax”,0);

% Cholesky Factor Update

200

Sx2 = cholupdate(Sx2, sqrt(-wc2(1))*(Xx(:,1)-x_bar2), “-7);

% Measurement Equations

Y = zeros(nR2, n2); % Pre-fill
y bar = zeros(nR2,1); % Pre-fill
for k = 1:n2

if SIM ==

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(13:18,k);
else

% Calculated Observations

Y(:,k)=Xx(1:6,k)+X(16:21,k);
end

% Calculated Observation Mean
y bar =y bar + wm2(k)*Y(:,k);
end

% Estimated Observation Covariance

Bx = sqrt(wc2(2))*(Y(:,2:n2) - y_bar(:,ones(1,n2-1)));
% QR Decomposition

[~. Syl = qr(Bx”,0);

% Cholesky Factor Update

Sy = cholupdate(Sy, sqrt(-wc2(1))*(Y(:,1)-y _bar), “-7);
% Make Sy Lower Triangular

Sy = Sy’;

% Estimated Cross Covariance
Pxy = zeros(nx2,nR2);
for k = 1:n2
Pxy = Pxy + wc2(K)*((Xx(:,k) - x bar2)*(Y(:,k) - y _bar)’);
end

% Measurements
Z = [N_sat; E _sat; D _sat; speed*cos(CoG); speed*sin(CoG); Vd_sat];

t» Kalman Filter Equations

% Kalman Gain w/ Efficient Least Squares
K = (Pxy/Sy’)/Sy;

» Kalman State Corrections

X_bar2 = x _ bar2 + K*(Z - y bar);

% Covariance Correction

Ux = K*Sy;

for k = 1:nR2

Sx2 = cholupdate(Sx2, Ux(:,k), “-7);

XX

X

end
% Make Sx2 Lower Right Trangular
Sx2 = Sx27;

X_HAT = [x bar(1:4); x_bar2(1:6); x_bar(5:7); x _bar2(7:9)];
end

kk=kk+1;

end

201

function R_t2b = rot_t2b(Xx)

g0 = x(1); gl = x(2); g2 = x(3); a3 = x(4);

R_t2b = [q0"2+qln™2-g272-q37°2 2*(ql*q2+q0*q3) 2*(ql*q3-q0*qg2);
2*(gq2*ql-q0*qg3) q0"2-ql"™2+g272-g3°2 2*(g2*q3+q0*ql);
2*(gq3*ql+q0*g2) 2*(gq3*g2-q0*gql) q0N2-ql"N2-g272+q3°2];

end

function g = e2q(phi, theta, psi)

% Form Rotation Matrix

R _psi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) 0; 0 0 1];

R _theta = [cos(theta) 0 -sin(theta); 0 1 0; sin(theta) 0 cos(theta)];
R _phi = [1 0 0; 0 cos(phi) sin(phi); 0 -sin(phi) cos(phi)];

R_n2b = R_phi*R_theta*R_psi;

% Extract Quaternions
qO=sqgrt(1+trace(R_n2b))/2;
ql=(R_n2b(2,3)-R_n2b(3,2))/(4*q0);
q2=(R_n2b(3,1)-R _n2b(1,3))/(4*q0);
g3=(R_n2b(1,2)-R_n2b(2,1))/(4*q0);

g = [90; ql; 92; qg3];
end

202

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

LIST OF REFERENCES

“The Navy unmanned surface vehicle (USV) master plan,” U.S. Dept. of the
Navy, Washington, DC, 23 Jul 2007. [Online]. Available:
http://www.navy.mil/navydata/technology/usvmppr.pdf. Accessed Aug. 05, 2014.

M. A. Hurban, “Adaptive speed controller for the SeaFox autonomous surface
vessel,” M.S. thesis, Dept. Mech. and Aerospace Eng., Naval Postgraduate
School, Monterey, CA, 2012.

W. McAuley, Seaborne Controller Area Network (SEACAN) System for the High
Speed Maneuverable Surface Target (HSMST) Operations and Maintenance
(O&M) Manual, Naval Air Warface Centero Weapons Division, Port Hueneme,
CA, 2007.

Vector G2 Satellite Compass. (n.d.). ComNav Marine Ltd. [Online]. Available:
http://www.comnavmarine.com/html/cmnv2341.htm. Accessed Sep. 19, 2014.

User's Manual for the HG1700AH58 Inertial Measurement Unit, Minneapolis,
MN: Honeywell International Inc., 2006.

Robot Operating System (ROS). (n.d.). Open Source Robitcs Foundation.
[Online]. Available: http://www.ros.org/about-ros/. Accessed Sep. 19, 2014.

R. E. Kalman, “A new approach to linear filtering and prediction problems,”
ASME-Journal of Basic Engineering, vol. 82 (Series D), pp. 35-45, 1960.

J. A. Farrell, Aided Navigation: GPS with High Rate Sensors, New York:
McGraw-Hill, 2008.

“Kalman Filtering from Singal Processing Standpoint,” unpublished class notes
for Guidance Navigation and Control of Marine Systems, Dept. of Mechanical
and Aerospace Engineering, Naval Postgraduate School, Monterey, CA, Fall
2014,

N. J. Gordon, D. J. Salmond and A. F. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” IEEE Proceedings, vol. 140, no. 2, pp. 107-
13, 1993.

S. Julier, J. Uhlmann and H. Durrant-Whyte, “A new method for the nonlinear
trasnformation of means and covariance in filters and estimators,” IEEE
Transactions on Automatic Control, vol. 45, no. 3, pp. 477-82, 2000.

203

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401-21, 2004.

E. Wan and R. Merwe, “The unscented Kalman filter for nonlinear estimation,” in
Adaptive Systems for Signal Proceessing, Communicaitons, and Control
Symposium 2000, Lake Louise, Alta, 2000.

R. Merwe and E. A. Wan, “The square-root unscented Kalman filter for state and
parameter-estimation,” in 2001 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Salt Lake City, UT, 2001.

S. Julier, “The spherical simplex unscented transformation,” in Proceedings of
the 2003 American control Conference, Denver, CO, 2003.

X. Tang, X. Zhao and X. Zhang, “The square-root spherical simplex unscented
Kalman filter for state and parameter estimation,” in 9th International Conference
on Signal Processing, Beijing, China, 2008.

Condor: The Competition Soaring Simulator. (n.d.). Condor Team. [Online].
Available: http://www.condorsoaring.com/. Accessed Sep. 19, 2014.

T. Fossen, Mathematical Models for Control of Aircraft and Satellites,
Trondheim, Norway: Dept. of Engineering Cybernetics, NTNU, 2011.

G. M. Siouris, Aerospace Avionics Systems: A Modern Sysnthesis, San Diego,
CA: Academic Press, 1993.

H. Lopes, E. Kampen, and Q. Chu, “Attitude determindation of highly dynamic
fixed-wing UAVs with GPS/MEMS-AHRS integration,” AIAA Guidance,
Navigation, and Control Conferences, Minneapolis, MN, 2011.

D. Kingston, “Implementation issues of real-time trajectory generation on small
UAVs,” M.S. thesis, Dept. of Electrical and Computer Eng., Bringham Young
University, Provo, UT, 2004.

A. Eldredge, “Improved state estimation for miniature air vehicles,” M.S. thesis,
Dept. of Mech. Eng., Bringham Young University, Provo, UT, 2006.

J. Diebel, Representing Attitude: Euler Angles, Unit Quaternions, and Rotation
Vectors, Palo Alto, CA: Stanford University, 2006.

204

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library

Naval Postgraduate School
Monterey, California

205

